• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2018 - Development of an on-chip antibiotic permeability assay with single molecule detection capability

icon vpp   Vesicle Prep Pro publication in IEEE Transactions on NanoBioscience (2018)

Authors:
Guzel F.D., Citak F.

Journal:
IEEE Transactions on NanoBioscience (2018) 99:1-1


Abstract:

Electrophysiology is the method of choice to characterize membrane channels. In this study, we demonstrate a patch pipette based simple miniaturization that allows performing conductance measurements on a planar lipid bilayer in a microfluidic channel. Membrane proteins were reconstituted into Giant Unilamellar Vesicles (GUVs) by electroswelling, and GUVs with a single channel insertion were patched at the tip of pipette. We applied this approach to investigate the interactions of porins from E. coli with single antibiotics, and this will potentially provide information on the permeability rates. The results of this study suggest that this approach can be extended to the integration of several pipettes into the microfluidic channel from different positions, allowing the multiplexed recordings and also reducing the substrate consumption below μL volumes.


Download here

Back to Overview

Nanion Corporate Blog

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.