• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

Our Product Portfolio

SyncroPatch 384/768PE

SyncroPatch 384/768PE

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

CardioExcyte 96

CardioExcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2018 - Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are IKr blockers with proarrhythmic effects in vitro and in vivo

icon pl   Patchliner publication in Pharmacological Research (2018)

Authors:
Baburin I., Varkevisser R., Schramm A., Saxena P., Beyl S., Szkokan P., Linder T., Stary-Weinzinger A., van der Heyden M.A.G., Houtman M., Takanari H., Jonsson M., Beekman J.H.D., Hamburger M., Vos M.A., Hering S.

Journal:
Pharmacological Research (2018) doi: 10.1016/j.phrs.2018.02.024 


Abstract:

Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects. Dehydroevodiamine (DHE) and hortiamine were identified as IKr (rapid delayed rectifier current) inhibitors in Evodia extract by HPLC-microfractionation and subsequent patch clamp studies on human embryonic kidney cells. DHE and hortiamine inhibited IKr with IC50s of 253.2 ± 26.3 nM and 144.8 ± 35.1 nM, respectively. In dog ventricular cardiomyocytes, DHE dose-dependently prolonged the action potential duration (APD). Early afterdepolarizations (EADs) were seen in 14, 67, 100, and 67% of cells after 0.01, 0.1, 1 and 10 μM DHE, respectively. The proarrhythmic potential of DHE was evaluated in 8 anesthetized rabbits and in 8 chronic atrioventricular block (cAVB) dogs. In rabbits, DHE increased the QT interval significantly by 12 ± 10% (0.05 mg/kg/5 min) and 60 ± 26% (0.5 mg/kg/5 min), and induced Torsade de Pointes arrhythmias (TdP, 0.5 mg/kg/5 min) in 2 rabbits. In cAVB dogs, 0.33 mg/kg/5 min DHE increased QT duration by 48 ± 10% (P < 0.05*) and induced TdP in 2/4 dogs. A higher dose did not induce TdP. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), methanolic extracts of Evodia, DHE and hortiamine dose-dependently prolonged APD. At 3 μM DHE and hortiamine induced EADs.

hERG inhibition at submicromolar concentrations, APD prolongation and EADs in hiPSC-CMs and dose-dependent proarrhythmic effects of DHE at micromolar plasma concentrations in cAVB dogs should increase awareness regarding proarrhythmic effects of widely used Evodia extracts.


Download here

Back to Overview

Nanion Corporate Blog

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok