• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

PepT1 - "Electrophysiological recordings of PepT1 (SLC15A1) activity on Nanion’s SURFE²R"

Icon N1   SURFE²R N1 application note:   logo pdf   (0.9 MB)

Summary:

The human peptide transporter PepT1 is an uptake transporter responsible for initial absorption and renal reabsorption of dietary oligopeptides. It is primarily located in the plasma membranes of enterocytes of the small intestine as well as the renal proximal tubular cells. PepT1 functions as a co-transporter, coupling the uphill peptide transport into the cells to the electrochemical proton gradient. Due to the movement of protons, PepT1 is an electrogenic transporter. PepT1 shows a very high capacity but a low affinity and substrate specificity. Its ability to transport a large range of compounds has enabled the rational design of drugs and pro-drugs (e.g. penicillins, ACE inhibitors) which have good oral bio-availability using delivery via PepT1. Designing pro-drugs with higher affinity for PepT1 is a successful strategy to increase the bio-availability of poorly absorbed drugs. Here we present electric real-time PepT1 activity measurements on the SURFE²R instruments using purified plasma membranes of CHO cells overexpressing PepT1. Peptide transport was activated on the SURFE²R N1 using a sensor with attached PepT1- containing membrane fragments which was inserted into the device. This was perfused with a buffer containing the dipeptide glycyl-glycine as the substrate. The data presented here show activation of PepT1 by glyclyglycine and inhibition by Lys[Z(No2)]-Val on the SURFE²R N1 and scale-up of the assay on the SURFE²R N96.

Back to Overview

Nanion Corporate Blog

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.