• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2018 - Temperature-Induced Modulation of Voltage-Gated Ion Channels in Human Lung Cancer Cell Line A549 Using Automated Patch Clamp Technology

icon pap   Port-a-Patch book chapter in World Congress on Medical Physics and Biomedical Engineering 2018.

Authors:
Langthaler S., Bergmoser K., Lassnig A., Baumgartner C.

 Book Chapter: 

World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings, vol 68/3. Springer, Singapore DOI:https://doi.org/10.1007/978-981-10-9023-3_123


Abstract:

In cancer cells specific ion channels exhibit altered channel expression, which can drive malignant and metastatic cell behavior. Hence, therapeutic strategies modulating ion channels prove to be promising in cancer therapeutics. Alterations in temperature, even small deviations from normothermia, may cause changes in electrophysiological processes, since activation and conductivity of various ion channels are temperature-dependent. In this pilot study, we focused on a basic understanding of the effects of temperature-alterations on voltage-gated ion channels of A549 cells using an automated patch-clamp system. The measurements were carried out in whole-cell voltage-clamped configuration applying test pulses between −60 and +60 mV. For positive voltages the ion-current curves showed an instantaneously increased conductance, followed by a slow current increase provoked by later activating voltage-gated ion channels, indicating the time-delayed response of additional channels. To investigate the temperature-dependent electrophysiological behavior, six cells (passages 7–10, n = 34) were examined at room temperature and normal body temperature. Compared to normal body temperature, reduced temperatures revealed a higher whole-cell current at negative voltages (63.4% (±18.5%), −60 mV) and lower currents (52.6% (±27.3%), +60 mV) at positive voltages, indicating a hypothermia-induced modulation of voltage-gated channels in the lung cancer cell line A549.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.