• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2008 - Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes

icon pap  Port-a-Patch and   icon vpp   Vesicle Prep Pro publication in Lab-on-a-chip (2008)

Authors: 
Kreir M., Farre C., Beckler M., George M., Fertig N.

 

Journal: 
Lab-on-a-Chip (2008) 8(4):587-95


Abstract: 

Solvent-free planar lipid bilayers were formed in an automatic manner by bursting of giant unilamellar vesicles (GUVs) after gentle suction application through micron-sized apertures in a borosilicate glass substrate. Incubation of GUVs with the purified ion channel protein of interest yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. This approach reduces the time-consuming, laborious and sometimes difficult protein reconstitution processes normally performed after bilayer formation. Bilayer recordings are attractive for investigations of membrane proteins not accessible to patch clamp analysis, like e.g. proteins from organelles. In the presented work, we show the example of the outer membrane protein OmpF from Escherichiacoli. We reconstituted OmpF in proteoliposomes and observed the characteristic trimeric conductance levels and the typical gating induced by pH and transmembrane voltage. Moreover, OmpF is the main entrance for beta-lactam antibiotics and we investigated translocation processes of antibiotics and modulation of OmpF by spermine. We suggest that the rapid formation of porin containing lipid bilayers is of potential for the efficient electrophysiological characterization of the OmpF protein, for studying membrane permeation processes and for the rapid screening of antibiotics.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.