• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2018 - Powering the ABC multidrug exporter LmrA: How nucleotides embrace the ion-motive force

icon pap   Port-a-Patch publication in Science Advances (2018)

Authors:
Agboh K., Lau C.H.F., Khoo Y.S.K., Singh H., Raturi S., Nair A.V., Howard J., Chiapello M., Feret R., Deery M.J., Murakami S., van Veen H.W.

Journal:
Science Advances (2018) 4(9):eaas9365   doi: 10.1126/sciadv.aas9365


Abstract:

LmrA is a bacterial ATP-binding cassette (ABC) multidrug exporter that uses metabolic energy to transport ions, cytotoxic drugs, and lipids. Voltage clamping in a Port-a-Patch was used to monitor electrical currents associated with the transport of monovalent cationic HEPES+ by single-LmrA transporters and ensembles of transporters. In these experiments, one proton and one chloride ion are effluxed together with each HEPES+ ion out of the inner compartment, whereas two sodium ions are transported into this compartment. Consequently, the sodium-motive force (interior negative and low) can drive this electrogenic ion exchange mechanism in cells under physiological conditions. The same mechanism is also relevant for the efflux of monovalent cationic ethidium, a typical multidrug transporter substrate. Studies in the presence of Mg-ATP (adenosine 5′-triphosphate) show that ion-coupled HEPES+ transport is associated with ATP-bound LmrA, whereas ion-coupled ethidium transport requires ATP binding and hydrolysis. HEPES+ is highly soluble in a water-based environment, whereas ethidium has a strong preference for residence in the water-repelling plasma membrane. We conclude that the mechanism of the ABC transporter LmrA is fundamentally related to that of an ion antiporter that uses extra steps (ATP binding and hydrolysis) to retrieve and transport membrane-soluble substrates from the phospholipid bilayer.


Download here

Back to Overview

Nanion Corporate Blog

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.