• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

2009 - Electrogenic ion pumps investigated on a solid supported membrane: comparison of current and voltage measurements

Icon N1   SURFE²R ONE (a predecessor model of SURFE²R N1) publication in Langmuir (2009)

Authors:
Bartolommei G., Moncelli M.R., Rispoli G., Kelety B., Tadini-Buoninsegni F.

Journal:
Langmuir (2009) 25(18):10925-10931


Abstract:

Current and voltage measurements were performed on Na,K-ATPase and sarcoplasmic reticulum (SR) Ca-ATPase. Measurements of current transients under short-circuit conditions and of voltage transients under open-circuit conditions were carried out by employing a solid supported membrane (SSM). Purified membrane fragments containing Na,K-ATPase or native SR vesicles were adsorbed on a SSM and were activated by performing substrate concentration jumps. Current and voltage transients were recorded in the external circuit. They are related to pump activity and can be attributed to electrogenic events in the reaction cycles of the two enzymes. While current transients of very small amplitude are difficult to detect, the corresponding voltage transients can be measured with higher accuracy because of a much more favorable signal-to-noise ratio. Therefore, voltage measurements are preferable for the investigation of slow processes generating low current signals, e.g., for the analysis of low turnover transporters.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.