• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

1999 - Charge Translocation by the Na/K-ATPase Investigated on Solid Supported Membranes: Rapid Solution Exchange with a New Technique

Icon N1   SURFE²R-technology (custom-built system) publication in Biophysical Journal (1999)

Authors:
Pintschovius J., Fendler K.

Journal:
Biophysical Journal (1999) 76(2):814-826


Abstract:

Adsorption of Na+/K+-ATPase containing membrane fragments from pig kidney to lipid membranes allows the detection of electrogenic events during the Na+/K+-ATPase reaction cycle with high sensitivity and time resolution. High stability preparations can be obtained using solid supported membranes (SSM) as carrier electrodes for the membrane fragments. The SSMs are prepared using an alkanethiol monolayer covalently linked to a gold surface on a glass substrate. The hydrophobic surface is covered with a lipid monolayer (SAM, self-assembled monolayer) to obtain a double layer system having electrical properties similar to those of unsupported bilayer membranes (BLM). As we have previously shown (, Biophys. J. 64:384-391), the Na+/K+-ATPase on a SSM can be activated by photolytic release of ATP from caged ATP. In this publication we show the first results of a new technique which allows rapid solution exchange at the membrane surface making use of the high mechanical stability of SSM preparations. Especially for substrates, which are not available as a caged substance-such as Na+ and K+-this technique is shown to be capable of yielding new results. The Na+/K+-ATPase was activated by rapid concentration jumps of ATP and Na+ (in the presence of ATP). A time resolution of up to 10 ms was obtained in these experiments. The aim of this paper is to present the new technique together with the first results obtained from the investigation of the Na+/K+-ATPase. A comparison with data taken from the literature shows considerable agreement with our experiments.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.