• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

17.09.2020 | Webinar: Electrophysiological investigation of integral membrane proteins using the Orbit mini

Icon Orbit Mini  Orbit mini Webinar

Date: September 17. 2020, 4:00 PM CET (10:00 AM EDT)

200917 blog image orbit mini webinar

Speakers: 

Dr. Conrad Weichbrodt (Senior Scientist / Product Manager Orbit family; Nanion Technologies)

 

Abstract:

A free standing lipid bilayer separating two aqueous compartments represents a fundamental prerequisite for the investigation of electrophysiological features of membrane spanning proteins like ion channels, porins or certain membrane active toxins. The convenient and reproducible preparation of these model bilayers and the often tedious workflow of conducting such an experiment on classic one channel setups, however, still remain an obstacle for easy and fast data generation.

Here we present Nanion’s Orbit mini device which is explicitly designed to meet the special requirements of experiments on artificial lipid bilayers: use of Ionera’s MECA (micro electrode cavity array) chip technology combined with state of the art low noise amplifiers (Elements S.R.L.) enable the fully parallel low-noise recording of four separate lipid bilayers at bandwidths up to 100 kHz. Today’s webinar consists of a general introduction of the system and a brief overview of it features, applications and optional add ons. We then demonstrate how to actually perform an experiment on the device showcasing translocation of Polyethylene glycol (PEG) polymers through the well established and commercially available porin alpha-Hemolysin.


Access the Q&A from the webinar here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.