• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

2021 - Induced Pluripotent Stem Cell-Derived Cardiomyocytes with SCN5A R1623Q Mutation Associated with Severe Long QT Syndrome in Fetuses and Neonates Recapitulates Pathophysiological Phenotypes

icon sp96 SyncroPatch 384PE (a predecessor model of the SyncroPatch 384 instrument) Publication in Biology (2021)

Authors:
Hayama E., Furutani Y., Kawaguchi N., Seki A., Nagashima Y., Okita K., Takeuchi D., Matsuoka R., Inai K., Hagiwara N., Nakanishi T.

Journal:

Bioligy (2021) doi:10.3390/biology10101062


Abstract: 

The SCN5A R1623Q mutation is one of the most common genetic variants associated with severe congenital long QT syndrome 3 (LQT3) in fetal and neonatal patients. To investigate the properties of the R1623Q mutation, we established an induced pluripotent stem cell (iPSC) cardiomyocyte (CM) model from a patient with LQTS harboring a heterozygous R1623Q mutation. The properties and pharmacological responses of iPSC-CMs were characterized using a multi-electrode array system. The biophysical characteristic analysis revealed that R1623Q increased open probability and persistent currents of sodium channel, indicating a gain-of-function mutation. In the pharmacological study, mexiletine shortened FPDcF in R1623Q-iPSC-CMs, which exhibited prolonged field potential duration corrected by Fridericia’s formula (FPDcF, analogous to QTcF). Meanwhile, E4031, a specific inhibitor of human ether-a-go-go-related gene (hERG) channel, significantly increased the frequency of arrhythmia-like early after depolarization (EAD) events. These characteristics partly reflect the patient phenotypes. To further analyze the effect of neonatal isoform, which is predominantly expressed in the fetal period, on the R1623Q mutant properties, we transfected adult form and neonatal isoform SCN5A of control and R1623Q mutant SCN5A genes to 293T cells. Whole-cell automated patch-clamp recordings revealed that R1623Q increased persistent Na+ currents, indicating a gain-of-function mutation. Our findings demonstrate the utility of LQT3-associated R1623Q mutation-harboring iPSC-CMs for assessing pharmacological responses to therapeutic drugs and improving treatment efficacy. Furthermore, developmental switching of neonatal/adult Nav1.5 isoforms may be involved in the pathological mechanisms underlying severe long QT syndrome in fetuses and neonates.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.