• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384: HTS Automated Patch Clamp

    SyncroPatch 384: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

2021 - A model-guided pipeline for drug cardiotoxicity screening with human stem-cell derived cardiomyocytes

icon pl  Patchliner Pre-Print Publication in bioRxiv (2021)

Authors:
Clark A. P., Wie S., Krogh-Madsen T., Christini D. J.

Journal:

bioRxiv (2021) doi:10.1101/2021.09.10.459625


Abstract: 

New therapeutic compounds go through a preclinical drug cardiotoxicity screening process that is overly conservative and provides limited mechanistic insight, leading to the misclassification of potentially beneficial drugs as proarrhythmic. There is a need to develop a screening paradigm that maintains this high sensitivity, while ensuring non-cardiotoxic compounds pass this phase of the drug approval process. In this study, we develop an in vitro-in silico pipeline using human induced stem-cell derived cardiomyocytes (iPSC-CMs) to address this problem. The pipeline includes a model-guided optimization that produces a voltage-clamp (VC) protocol to determine drug block of seven cardiac ion channels. Such VC data, along with action potential (AP) recordings, were acquired from iPSC-CMs before and after treatment with a control solution or a low-, intermediate-, or high-risk drug. We identified significant AP prolongation (a proarrhythmia indicator) in two high-risk drugs and, from the VC data, determined strong ion channel blocks that led to the AP changes. The VC data also uncovered an undocumented funny current (If) block by quinine, which we confirmed with experiments using a HEK-293 expression line. We present a new approach to cardiotoxicity screening that simultaneously evaluates proarrhythmia risk (e.g. AP prolongation) and mechanism (e.g. channel block) from iPSC-CMs.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.