• Nanion Technologies: Smart Tools for Ion Channel Research

    Nanion Technologies: Smart Tools for Ion Channel Research

  • SyncroPatch 384: HTS Automated Patch Clamp

    SyncroPatch 384: HTS Automated Patch Clamp

  • SURFE²R 96SE: Label-free HTS Transporter Screening

    SURFE²R 96SE: Label-free HTS Transporter Screening

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • Bilayer recordings: Orbit product family

    Bilayer recordings: Orbit product family

  • CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

    CardioExcyte 96 SOL: Pacing Cardiomyocytes with Light

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

2022 - Balancing water solubility with membrane permeability in the design of a synthetic ionophore

 icon pap Port-a-Patch and icon vpp  Vesicle Prep Pro Pre-Print in ChemRxiv (2022)

Authors:
Yang K., Boles J.E., White L.J., Hilton K.L.F., Lai H.Y., Long Y., Hiscock J.R., Haynes C.J.E.

Journal: 
ChemRxiv (2022) doi:10.26434/chemrxiv-2021-rpxhs-v2


Abstract: 

Synthetic ionophores are promising therapeutic targets, yet current limitations associated with their lipophilicity and poor water solubility prevent the translation of this molecular technology into the clinic. In this work we report investigations into the cation transport ability of a series of antimicrobial supramolecular, self-associating amphiphiles (SSAs). We identify a member of this class of compounds to function as a K+ transporter in cooperative action with a known anionophore. This SSA is soluble in a range of organic solvents and in 100% water, retaining its transport activity when delivered from a purely aqueous solution – therefore overcoming current molecular delivery limitations. These findings shed light on a potential antimicrobial mechanism of action and inform the design of future therapeutic targets that can balance water solubility and membrane penetration


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.