• Our CiPA Instruments

    Patchliner & SyncroPatch 384PE (CiPA ion channel working group); CardioExcyte 96 (CiPA myocyte working group)

  • CiPA hERG Protocol

    This protocol was used for hERG studies on the Patchliner and SyncroPatch 384PE.

  • HTS CiPA hERG Assay

    Effects of Cisapride using the CiPA hERG protocol on the SyncroPatch 384PE

  • Myocyte & Ion Channel Effects

    Arrhythmic Field potentials in iPSC-derived Cardiomyocytes (CardioExcyte 96) and hERG current inhibition (SyncroPatch 384PE)

  • Gigaseal HTS patch clamp

    CiPA-specified cardiac ion channels recorded at high throughput

  • Gigaseal HTS patch clamp

    High throughput recordings of cardiac ion channels at physiological temperature

  • CardioExcyte 96 screening tool

    CardioExcyte 96 with integrated liquid handling for cardiac safety screening

2017 - Automated Patch Clamp Recordings of Human Stem Cell- Derived Cardiomyocytes.

icon pl  Patchliner and   icon sp96   SyncroPatch 384PE book chapter in Stem Cell-Derived Models in Toxicology (2017)

Authors: 
Obergrussberger A., Haarmann C., Stölzle-Feix S., Becker N., OhtsukiA., Brüggemann A., George M., Fertig N.

 

Book chapter: 
In: Stem Cell-Derived Models in Toxicology. Methods in Pharmacology and Toxicology. (2017) Humana Press


Abstract: 

Patch clamp remains the gold standard for studying ion channel activity within cell membranes. Conventional patch clamp is notoriously low throughput and technically demanding making it an unsuitable technique for high-throughput screening (HTS). Automated patch clamp (APC) devices have done much to increase throughput and improve ease of use, particularly when using standard cell line cells such as HEK and CHO. In recent years, however, the use of human-induced pluripotent stem cells (hiPSCs) has become increasingly important, especially for safety screening in response to the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative introduced in 2013. The goal of this initiative is to standardize assays, targets, and cell types. One part of the paradigm focuses on the use of APC and hiPSC cardiomyocytes. This chapter describes two automated patch clamp devices recording from up to 8 or 384 cells simultaneously using hiPSC cardiomyocytes. In the voltage clamp mode, voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels could be recorded, and pharmacology using tetracaine, a NaV channel blocker, is described. Additionally, action potentials in the current clamp mode were recorded, and examples are shown including the effect of nifedipine, a CaV channel blocker. Detailed methods are provided for cell culture and harvesting of hiPSCs for use on APC devices. Protocols are also provided for voltage and current clamp recordings on the Patchliner, and voltage clamp experiments on the SyncroPatch 384PE APC instruments.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok