• Our CiPA Instruments

    Patchliner & SyncroPatch 384PE (CiPA ion channel working group); CardioExcyte 96 (CiPA myocyte working group)

  • CiPA hERG Protocol

    This protocol was used for hERG studies on the Patchliner and SyncroPatch 384PE.

  • HTS CiPA hERG Assay

    Effects of Cisapride using the CiPA hERG protocol on the SyncroPatch 384PE

  • Myocyte & Ion Channel Effects

    Arrhythmic Field potentials in iPSC-derived Cardiomyocytes (CardioExcyte 96) and hERG current inhibition (SyncroPatch 384PE)

  • Gigaseal HTS patch clamp

    CiPA-specified cardiac ion channels recorded at high throughput

  • Gigaseal HTS patch clamp

    High throughput recordings of cardiac ion channels at physiological temperature

  • CardioExcyte 96 screening tool

    CardioExcyte 96 with integrated liquid handling for cardiac safety screening

2018 - A Hybrid Model for Safety Pharmacology on an Automated Patch Clamp Platform: Using Dynamic Clamp to Join iPSC-Derived Cardiomyocytes and Simulations of IK1 Ion Channels in Real-Time

icon pl  Patchliner publication in Frontiers in Physiology

Authors: 
Goversen B., Becker., N., Stölzle-Feix S., Obergrussberger A., Vos M.A., van Veen T.A.B., Fertig N., de Boer T.P.

Journal: 
Frontiers in Physiology (2018) 8:1094 doi: 10.3389/fphys.2017.01094


Abstract: 

An important aspect of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) proposal is the use of human stem cell-derived cardiomyocytes and the confirmation of their predictive power in drug safety assays. The benefits of this cell source are clear; drugs can be tested in vitro on human cardiomyocytes, with patient-specific genotypes if needed, and differentiation efficiencies are generally excellent, resulting in a virtually limitless supply of cardiomyocytes. There are, however, several challenges that will have to be surmounted before successful establishment of hSC-CMs as an all-round predictive model for drug safety assays. An important factor is the relative electrophysiological immaturity of hSC-CMs, which limits arrhythmic responses to unsafe drugs that are pro-arrhythmic in humans. Potentially, immaturity may be improved functionally by creation of hybrid models, in which the dynamic clamp technique joins simulations of lacking cardiac ion channels (e.g., IK1) with hSC-CMs in real-time during patch clamp experiments. This approach has been used successfully in manual patch clamp experiments, but throughput is low. In this study, we combined dynamic clamp with automated patch clamp of iPSC-CMs in current clamp mode, and demonstrate that IK1 conductance can be added to iPSC-CMs on an automated patch clamp platform, resulting in an improved electrophysiological maturity.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok