• Aerolysin

    Screenshot s of a typical channel forming aerolysin activity assay with the Orbit 16.

2020 - Aerolysin nanopores decode digital information stored in tailored macromolecular analytes

Icon Orbit Mini   Orbit mini publication in Science Advances (2020)

Cao C., Krapp L.F., Al Ouahabi A., König N.F., Cirauqui N., Radenovic A., Lutz J.F. Dal Peraro M.

Science Advances (2020) doi: 10.1126/sciadv.abc2661


Digital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of “big data.” The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry. In comparison, nanopore technology can be faster, cheaper, nondestructive and provide detection at the single-molecule level; moreover, it can be massively parallelized and miniaturized in portable devices. Here, we demonstrate the ability of engineered aerolysin nanopores to accurately read, with single-bit resolution, the digital information encoded in tailored informational polymers alone and in mixed samples, without compromising information density. These findings open promising possibilities to develop writing-reading technologies to process digital data using a biological-inspired platform.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.