CaV1.2 | voltage-dependent, L type, alpha 1C subunit calcium channel

Family:
Calcium channels

Subgroups:
L-Type (CaV1.1–CaV1.4), P/Q-Type (CaV2.1), N-Type (CaV2.2), R-Type (CaV2.3), T-Type (CaV3.1–CaV3.3)

Topology:
Six transmembrane alpha helices (S1–S6), total of four homologous domains make up the tetrameric alpha subunit structure

Assembling:
One large alpha subunit forms a functional channel, accessory subunits ( α1, α2δ, β1-4, and γ) are crucial for robust expression, they functionally modulate the alpha subunit

CaV1.2: Background Information

CaV1.2 is a subunit of L-type voltage-dependent calcium channel. In the heart it forms a complex with the subunits β2 and α2δ1 in a 1:1:1 ratio. The alpha-1 consists of 24 transmembrane segments and is the pore forming element through which ions pass into the cell, whereas the β2 and α2δ1 subunits modulate the channel function. CaV1.2 is widely expressed in the smooth muscle, pancreatic cells, fibroblasts, and neurons. However, it is particularly important and well known for its expression in the heart where it mediates L-type currents, which causes calcium-induced calcium release from the ER Stores via ryanodine receptors. It depolarizes at -30 mV and helps define the shape of the action potential in cardiac and smooth muscle. CaV1.2 is inhibited by the action of STIM1.

Gene:
CACNA1C

Human Protein:
UniProt Q13936

Tissue:
Heart, brain, lymphocytes, prostate, bladder, uterus ,stomach, colon, placenta, adrenal gland

Function/ Application:
Ca2+ entry in excitable cells

Pathology:
Arterial hypertension, Long QT syndrome, schizophrenia, Timothy syndrome, BRGDA3, bipolar disorder, schizophrenia

Interaction:
Kir/Gem, CSN5/Jab1, β1-4 subunits, α2δ subunits, NF-κB, osteoprotegerin

Modulator:
Verapamil, nifedipine, kurtoxin, calcicludine, mibefradil, calciseptine, BAYK-8644, verapamil

Assays:
Patch Clamp: whole cell, room temperature

Particularities:
CaV channels often show a rundown phenomenon. Adequate intra- and extrcellular solutions are essential for a good data quality.

Recommended Reviews:
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005). "International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels". Pharmacol Rev. 57 (4): 411–25.

Data and Applications

CaV1.2 - Pharmacology of Nifedipine, using the CiPA protocol

icon sp96   CiPA PE CaV1 2 2SyncroPatch 384PE data and applications:
Cells were kindly provided by Charles River.

Screenshots of the PatchControl 384 software showing hCaV1.2/β2/α2δ1 current traces in response to the CiPA voltage step protocol and the corresponing current-voltage relationship plot. Measured on the SyncroPatch 384PE using perforated patch methodology (Escin) and multi-hole chips (4 holes per well), the success rate of valuable data for the analysis was 94%. The IC50 value of Nifedipine was determined as 106 nM.

 

Cardiac Ion Channels - Pharmacology of Vandetanib

CiPA PE CE Pharmacology VandetanibIcon CE    CardioExcyte 96 and   icon pl   Patchliner data and applications:
Cells were kindly provided by Charles River and Cellular Dynamics.

The image on the left hand side displays the results of the blocking effect of Vandetanib on hERG, NaV1.5, CaV1.2 and KV4.3. The compound induced arrhythmia when iPSC-CM were exposed to a minimum concentration of 1 µM. Arrhytmic events were both detected in field potential recordings as well as in the impedance based contractility.

Cardiac Ion Channels - Pharmacology of Sotalol

CiPA PE CE Pharmacology SotalolIcon CE    CardioExcyte 96 and   icon sp96   SyncroPatch 384PE data and applications:
Cells were kindly provided by Charles River and Cellular Dynamics.

The image on the left hand side displays the results of the blocking effect of Sotalol on hERG. The result is in good agreement with manual patch clamp data (Crumb et al., 2016). The compound induced arrhythmia when iPSC-CM were exposed to a minimum concentration of 10 µM. Arrhytmic events were both detected in field potential recordings as well as in the impedance based contractility measurements.

CaV1.2 - Current Voltage Relationship

Cav12 IV

icon sp96   SyncroPatch 96 (a predecessor model of SyncroPatch 384PE) data and applications:

Shown are raw current traces (top) and the constructed peak current-voltage relationship (bottom) of CaV1.2 (HEK293) recorded on the SyncroPatch 96.

 

 

 

 

 

CaV1.2 - Stable recording from frozen stock cells

icon sp96   170922 CaV1.2 Data SyncroPatch384PESyncroPatch 384PE data and applications:
Cells were kindly provided by Charles River.

Screenshots of the PatchControl 384 software showing hCaV1.2β2/α2δ1 current traces in response to a voltage step protocol and the corresponing current-voltage relationship plot. Measured on the SyncroPatch 384PE using perforated patch methodology (Escin) and multi-hole chips (4 holes per well), the success rate of valuable data for the analysis was 100 %. The cells were used from a frozen cell stock (after induction) and recorded stably for more than 20 minutes. The IC50 value of Nifedipine was determined as 21 nM.

Cardiomyocytes (Ventricular Myocytes) - Recordings

VentricularMyocyte1

icon pap   Port-a-Patch data and applicatons:
Thanks to S. Rakovic and D. Terrar from University of Oxford, for preparing the cardiomyocytes used in these experiments.

Ca2+ current recorded from a ventricular myocyte. Raw current voltage relationship and peak current data are plotted (top). From the IV-plot the half-activating voltage was determined as -16 mV. The current was later blocked by the L-type Ca2+ channel blocker, nifedepine (10 µM). Currents were elicited by stepping to +10 mV for 200 ms from a holding potential of -40 mV every 5 seconds.

Application Notes

CaV1.2 - "Stability and Pharmacology of CaV1.2 Channels on Nanion’s SyncroPatch 384PE"

icon sp96   SyncroPatch 384PE application note   logo pdf   (5.3 MB)
Cells were kidly provided by Charles River.

CaV1.2 - "High Throughput Pharmacology of CaV1.2 Channels on Nanion’s SyncroPatch 384PE"

icon sp96   SyncroPatch 384PE application note:   logo pdf   (2.7 MB)
Cells were kindly provided by SB Drug Discovery.  

Cardiomyocytes - "Impedance and EFP recordings of Pluricyte Cardiomyocytes on the CardioExcyte 96"

Icon CE   CardioExcyte 96 Application Note   logo pdf   (1.3 MB)
Cells were kindly provided by Ncardia.

Cardiomyocytes - "Impedance and EFP recordings of Cor.4U cells using Nanion’s CardioExcyte 96"

Icon CE   CardioExcyte 96 Application Note   logo pdf   (1.3 MB)
Cells were kindly provided by Ncardia.  

Cardiomyocytes - "Combining automated patch clamp, impedance and EFP of hiPSC-CMs"

Icon CE   CardioExcyte 96   icon sp96   SyncroPatch 3984PE   icon pl   Patchliner Application Note 
Cells kindly provided by Takara-Clonetech.

Cardiac Ion Channels - "Simultaneous Assessment of CiPA Stipulated Ion Channels on the SyncroPatch 384PE"

icon sp96   SyncroPatch 384PE application note   logo pdf   (1.3 MB)
Cells were kindly provided by Charles River.

Cardiac Ion Channels - "High Throughput Screening of Cardiac Ion Channels"

icon sp96   SyncroPatch 384PE   icon pl   Patchliner   Icon CE   CardioExcyte 96 application note   logo pdf   (2.3 MB)

Posters

Slide Decks

2017 - HTS in Cardiac Safety

Icon CE   CardioExcyte 96 presentation (slide deck)   logo pdf   (4.0 MB)

Publications

2017 - Structural and electrophysiological dysfunctions due to increased endoplasmic reticulum stress in a long-term pacing model using human induced pluripotent stem cell-derived ventricular cardiomyocytes

Icon CE  CardioExcyte 96 publication in Stem Cell Research and Therapy (2017)

Authors: 
Cui C., Geng L., Shi J., Zhu Y., Yang G., Wang Z., Wang J., Chen M.

2017 - L-Type Calcium Channel Inhibition Contributes to the Proarrhythmic Effects of Aconitine in Human Cardiomyocytes

icon pl  Patchliner publication in PLoS ONE (2017)

Authors: 
Wu J., Wang X., Chung Y.Y. Koh C.H. Liu Z., Guo H., Yuan Q., Wang C., Su S., Wei H.

2017 - Correlation between human ether-a-go-go related gene channel inhibition and action potential prolongation

icon pl   Patchliner publication in British Journal of Pharmacology (2017)

Authors:
Saxena P., Hortigon‐Vinagre M.P., Beyl S.,Baburin I., Andranovits S., Iqbal S.M., Costa A., IJzerman A.P., Kügler P., Timin E., Smith G.L., Hering S.

2016 - Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes

icon pl  Patchliner publication in Stem Cells and Development (2016)

Authors: 
Rajamohan D., Kalra S., Hoang M.D., George V., Staniforth A., Russell H., Yang X., Denning C.

2015 - Novel screening techniques for ion channel targeting drugs

icon pl  Patchliner,   icon sp96   SyncroPatch 384PE and   Icon CE   CardioExcyte 96 publication in Channels (2015)

Authors: 
Obergrussberger A., Stölzle-Feix S., Becker N., Brüggemann A., Fertig N., Möller C.

2014 - New strategies in ion channel screening for drug discovery: are there ways to improve its productivity?

icon sp96  SyncroPatch 384PE publication in Journal of Laboratory Automation (2014)

Authors: 
Farre C., Fertig N.

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok