• FoF1

    Experiments on the SURFE²R N1 show the action of the ATPase after application of ATP.

FoF1 - ATP phosphohydrolase (H+-Transporting) - ATP-Synthase

F-type ATPases, members belong to the P-bond hydrolysis driven transporters superfamily

The F1 motor, responsible for ATP turnover, has the subunit composition α3β3γδε.The F0 motor, responsible for ion translocation, is complex in mammals, with probably nine subunits centring on A, B, and C subunits in the membrane, together with D, E, F2, F6, G2 and 8 subunits. Multiple pseudogenes for the F0 motor proteins have been defined in the human genome.

F-type ATPases are found in eukaryotic mitochondria and chloroplasts as well as in bacteria. The F-type ATPase in humans is a mitochondrial membrane-associated multimeric complex consisting of two domains, an F0 channel domain in the membrane and an F1 domain extending into the lumen. Proton transport across the inner mitochondrial membrane is used to drive the synthesis of ATP, although it is also possible for the enzyme to function as an ATPase.

Data and Applications

Respiratory Chain Complex V - Action of the ATP Synthase after Application of ATP

Surfer RC VIcon N1   SURFE2R N1 data and applications:

The Respiratory Chain Complex V uses the transmembrane proton gradient (produced by Complex I, III and IV) to generates ATP from ADP plus phosphate. One component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. This reflux releases free energy, which is used to drive ATP synthesis, catalyzed by the other component of the complex. Experiments on the SURFE2R N1 show the action of the ATPase after application of ATP.



2019 - Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimersand to the generation of the full-conductance megachannel

 Icon Orbit Mini   Orbit mini publication in Journal of Biological Chemistry (2019)

Guo L., Carraro M., Carrer A., Minervini G., Urbani A., Masgras I., Tosatto S.C.E., Szabò I., Bernardi P., Lippe G.

2013 - Measuring Interference of Drug-Like Molecules with the Respiratory Chain: Toward the Early Identification of Mitochondrial Uncouplers in Lead Finding

Icon 96SE   SURFE²R N96 (predesessor model of SURFE²R 96SE) publication in Assay and Drug Development Technologies (2013)

Stock U., Matter H., Diekert K., Dörner W., Dröse S., Licher T.

a.      P-bond hydrolysis driven transporters

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok