KCa3.1 | IK | SK4 | Intermediate Conductance Calcium-activated Potassium Channel Protein 4

Family:
Calcium-activated Potassium channels

Members:
Today, eight  human calcium-activated channels are known: KCa1.1 (also known as BK or Maxi-K), KCa2.1 (also known as SK1), KCa2.2 (also known as SK2), KCa2.3 (also known as SK3) , KCa3.1 (also known as IK or SK4), KCa4.1, KCa4.2, KCa5.1

Topology:
KCa channels are made up of two different subunits, alpha and beta. The alpha subunit contains six or seven trans-membrane regions and forms homo- or heter-tetramers. The beta subunit has a regulative function and contains 2 trans-membrane regions.

Regulation:
This family of ion channels is, for the most part, activated by intracellular Ca2+. However, some of these channels (the KCa4 and KCa5 channels) are responsive instead to other intracellular ligands, such as Na+, Cl, and pH. Furthermore, multiple members of family are both ligand and voltage activated.

Data and Applications

KCa3.1 (SK4) - Activation by Perfusion of free internal Calcium

180209 Data PE SK4icon sp96   SyncroPatch 384/768 PE data and applications:
Cells were kindly provided by Charles River.

Screenshots of the PatchControl 384 software are showing KCa3.1 raw traces and according time plots (online analysis) to a voltage ramp from -120 mV to + 60 mV over 200 ms. The application of internal Ca2+ is indicated by the yellow bar. The current increased upon application of internal Ca2+ reaching a peak within 1-2 min after the start of the perfusion. Five minutes of stable KCa3.1 current was recorded prior the channel was inhibited by cumulative additions of external Ba2+; first partly (1 mM Ba2+) and then completely (5 mM Ba2+). The recording was performed with perfectly high success rates in whole cell configuration on a multi hole chip (4 holes per well) using the SyncroPatch 384PE.

Application Notes

KCa3.1 - "Modulation of hKCa3.1 by internal Ca2+ performed on Nanion’s Patchliner"

icon pl   Patchliner application note:   logo pdf   (0.6 MB)
Cells were kindly provided by Charles River.

Publications

2017 - Potassium channels Kv1.3 and KCa3.1 cooperatively and compensatorily regulate antigen-specific memory T cell functions

icon sp96  SyncroPatch 768PE publication in Nature Communications (2017)

Authors: 
Chiang E.Y., Li T., Jeet S., Peng I., Zhang J., Lee W. P., DeVoss J., Caplazi P., Chen J., Warming S., Hackos D.H., Mukund S., Koth C.M., Grogan J.L.

2017 - 'Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation

icon pl  Patchliner publication in Scientific Reports (2017)

Authors: 
Fermo E., Bogdanova A., etkova-Kirova P., Zaninoni A., Marcello A.P., Makhro A., Hänggi P., Hertz L., Danielczok J., Vercellati C., Mirra N., Zanella A., Cortelezzi A., Barcellini W., Kaestner L., Bianchi P.

2016 - Human T cells in silico: Modelling their electrophysiological behaviour in health and disease

icon pl  Patchliner publication in Journal of Theoretical Biology (2016)

Authors: 
Ehling P., Meuth P., Eichinger P., Hermann A.M., Bittner S., Pawlowski M., Pankratz S., Herty M., Budde T., Meuth S.G.

Webinars

27.06.2017 | Webinar: New Dynamics in Automated Patch Clamp

icon pl   Patchliner

This webinar shows new applications on dynamic patch clamp of iPSC-derived cardiomyocytes and introduces an assay on KCa3.1 expressed in erythrocytes

 

 

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok