• Kir3.1

    Blocking activities of compounds on Kir3.1/Kir3.4 on the Patchliner

    Vasas et al. (2016)

2016 - Myrsinane, Premyrsinane, and Cyclomyrsinane Diterpenes fromEuphorbia falcata as Potassium Ion Channel Inhibitors with Selective G Protein-Activated Inwardly Rectifying Ion Channel (GIRK) Blocking Effects

icon pl  Patchliner publication in Journal of Natural Products (2016)

Vasas A., Forgo P., Orvos P., Tálosi L., Csorba A., Pinke G., Hohmann J.


J Nat Prod (2016) 79(8):1990-2004


GIRK channels are activated by a large number of G protein-coupled receptors and regulate the electrical activity of neurons, cardiac atrial myocytes, and β-pancreatic cells. Abnormalities in GIRK channel function have been implicated in the pathophysiology of neuropathic pain, drug addiction, and cardiac arrhythmias. In the heart, GIRK channels are selectively expressed in the atrium, and their activation inhibits pacemaker activity, thereby slowing the heart rate. In the present study, 19 new diterpenes, falcatins A–S, and the known euphorprolitherin D were isolated from Euphorbia falcata. The compounds were assayed on stable transfected HEK-hERG (Kv11.1) and HEK-GIRK1/4 (Kir3.1 and Kir3.4) cells. Blocking activity on GIRK channels was exerted by 13 compounds (61–83% at 10 μM), and, among them, five possessed low potency on the hERG channel (4–20% at 10 μM). These selective activities suggest that myrsinane-related diterpenes are potential lead compounds for the treatment of atrial fibrillation.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.