2011 - Rapid and Contrasting Effects of Rosiglitazone on Transient Receptor Potential TRPM3 and TRPC5 Channels

icon pl  Patchliner publication in Molecular Pharmacology (2011)

Majeed Y., Bahnasi Y., Seymour V.A.L., Wilson L.A., Milligan C.J., Agarwal A.K., Sukumar P., Naylor J., Beech D.J.




The aim of this study was to generate new insight into chemical regulation of transient receptor potential (TRP) channels with relevance to glucose homeostasis and the metabolic syndrome. Human TRP melastatin 2 (TRPM2), TRPM3, and TRP canonical 5 (TRPC5) were conditionally overexpressed in human embryonic kidney 293 cells and studied by using calcium-measurement and patch-clamp techniques. Rosiglitazone and other peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were investigated. TRPM2 was unaffected by rosiglitazone at concentrations up to 10 μM but was inhibited completely at higher concentrations (IC50, ∼22.5 μM). TRPM3 was more potently inhibited, with effects occurring in a biphasic concentration-dependent manner such that there was approximately 20% inhibition at low concentrations (0.1–1 μM) and full inhibition at higher concentrations (IC50, 5–10 μM). PPAR-γ antagonism by 2-chloro-5-nitrobenzanilide (GW9662) did not prevent inhibition of TRPM3 by rosiglitazone. TRPC5 was strongly stimulated by rosiglitazone at concentrations of ≥10 μM (EC50, ∼30 μM). Effects on TRPM3 and TRPC5 occurred rapidly and reversibly. Troglitazone and pioglitazone inhibited TRPM3 (IC50, 12 μM) but lacked effect on TRPC5, suggesting no relevance of PPAR-γ or the thiazolidinedione moiety to rosiglitazone stimulation of TRPC5. A rosiglitazone-related but nonthiazolidinedione PPAR-γ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino)ethyl]-l-tyrosine (GW1929), was a weak stimulator of TRPM3 and TRPC5. The natural PPAR-γ agonist 15-deoxy prostaglandin J2, had no effect on TRPM3 or TRPC5. The data suggest that rosiglitazone contains chemical moieties that rapidly, strongly, and differentially modulate TRP channels independently of PPAR-γ, potentially contributing to biological consequences of the agent and providing the basis for novel TRP channel pharmacology.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.