• Nanion's Buffer Solutions

    Safe, accurate and ready-to-use

2022 - Prediction and verification of potential lead analgesic and antiarrhythmic components in Corydalis yanhusuo W. T. Wang based on voltage-gated sodium channel proteins

icon pap   Port-a-Patch and   Icon Buffer Solutions  Buffer Solution Publication in International Journal of Biological Macromolecules (2022)

Authors:
Sun J., Liu X., Zhao S., Zhang S., Yang L., Zhang J., Zhao M., Xu Y.

Journal:
International Journal of Biological Macromolecules (2022) doi:10.1016/j.ijbiomac.2022.07.024


Abstract:

Corydalis yanhusuo W. T. Wang, a traditional Chinese herbal medicine, has been used as an analgesic for thousands of years and it also promotes blood circulation. In this study, 33 Corydalis yanhusuo alkaloid active components were acquired from Traditional Chinese Medicine Database and Analysis Platform (TCMSP). A total of 543 pain-related targets, 1774 arrhythmia targets, and 642 potential targets of these active components were obtained using Swiss Target Prediction, GeneCards, Open Target Platform, and Therapeutic Target Database. Fifty intersecting targets were visualized through a Venn diagram, KEGG and GO pathway enrichment analysis. The analysis proposed that sodium ion channels are likely potential targets of Corydalis yanhusuo active components as analgesia and anti-arrhythmia agents. Molecular docking showed that the 33 components could bind to Nav1.7 and Nav1.5 (two subtypes of ion channel proteins) with different binding energies. In a patch clamp study, dihydrosanguinarine and dihydrochelerythrine, two monomers with the strongest binding effects, could inhibit the peak currents and promote both activation and inactivation phases of Nav1.5. Meanwhile, dihydrosanguinarine and dihydrochelerythrine could also inhibit peak currents and promote the activation phase of Nav1.7. Therefore, the findings from this study provide valuable information for future uses of traditional Chinese medicines to treat pain and cardiovascular disease.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.