• CE Slide 1
  • CE Slide 2
  • CE slide 3
  • CE slide 4
  • CardioExcyte 96

    Combined impedance and MEA-like recordings
  • CardioExcyte 96

    For cardiac safety screening
  • CardioExcyte 96

    Next generation label-free cell analysis
  • CardioExcyte 96

    Intuitive data analysis & arrhythmia detection

2020 - Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation

Icon CE   CardioExcyte 96 publication in Nature Communications (2020)

Authors:
Wang Y., Yao F., Wang L., Li Z., Ren Z., Li D., Zhang M., Han L., Wang S., Zhou B., Wang L.

Journal:
Nature Communications (2020) doi: 10.1038/s41467-020-16204-w


Abstract:

Cardiac maturation lays the foundation for postnatal heart development and disease, yet little is known about the contributions of the microenvironment to cardiomyocyte maturation. By integrating single-cell RNA-sequencing data of mouse hearts at multiple postnatal stages, we construct cellular interactomes and regulatory signaling networks. Here we report switching of fibroblast subtypes from a neonatal to adult state and this drives cardiomyocyte maturation. Molecular and functional maturation of neonatal mouse cardiomyocytes and human embryonic stem cell-derived cardiomyocytes are considerably enhanced upon co-culture with corresponding adult cardiac fibroblasts. Further, single-cell analysis of in vivo and in vitro cardiomyocyte maturation trajectories identify highly conserved signaling pathways, pharmacological targeting of which substantially delays cardiomyocyte maturation in postnatal hearts, and markedly enhances cardiomyocyte proliferation and improves cardiac function in infarcted hearts. Together, we identify cardiac fibroblasts as a key constituent in the microenvironment promoting cardiomyocyte maturation, providing insights into how the manipulation of cardiomyocyte maturity may impact on disease development and regeneration.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.