• FLEXcyte 96

    Measure true cardiac contractility
  • FLEXcyte 96

    Cardiomyocytes cultivated on a flexible membrane
  • FLEXcyte 96

    The complete setup fits on a lab benchtop
  • FLEXcyte 96

    Judge compound responses at a glance

2016 - Mechano-Pharmacological Characterization of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells

 Icon FLEX   FLEXcyte 96 alike technology publication in Cellular Physiology and Biochemistry (2016)

Authors:
Goßmann M., Frotscher R., Linder P., Neumann S., Bayer R., Epple M, Staat M., Artmann A., Artmann G.M.

Journal:
Physiology and Biochemistry (2016) 38:1182-1198


Background/ Aims:
Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication.

Methods:
In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca2+ channels (S-Bay K8644/verapamil) and Na+ channels (veratridine/ lidocaine).

Results:
The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data.

Conclusion:
We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok