• Orbit mini

    Simultaneous recording from four lipid bilayers

2017 - Molecular determinants of permeation in a fluoride-specific ion channel

icon vpp   Orbit mini in eLife (2017)

Last .B., Sun S., Pham M.C., Miller C.


eLife (2017) 6:e31259


Fluoride ion channels of the Fluc family combat toxicity arising from accumulation of environmental F-. Although crystal structures are known, the densely packed pore region has precluded delineation of the ion pathway. Here we chart out the Fluc pore and characterize its chemical requirements for transport. A ladder of H-bond donating residues creates a ‘polar track’ demarking the ion-conduction pathway. Surprisingly, while track polarity is well conserved, polarity is nonetheless functionally dispensable at several positions. A threonine at one end of the pore engages in vital interactions through its β-branched methyl group. Two critical central phenylalanines that directly coordinate F- through a quadrupolar-ion interaction cannot be functionally substituted by aromatic, non-polar, or polar sidechains. The only functional replacement is methionine, which coordinates F- through its partially positive γ-methylene in mimicry of phenylalanine’s quadrupolar interaction. These results demonstrate the unusual chemical requirements for selectively transporting the strongly H-bonding F- anion.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies).

You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.