• Patchliner

    Most versatile automated patch clamp system on the market
  • Patchliner

    In-house production and QC of consumables
  • Patchliner

    More than 10 years experience in assay design and support
  • Patchliner

    All features & benefits of manual patch clamp
  • Patchliner

    More than 100 Patchliners sold worldwide

2015 - Novel screening techniques for ion channel targeting drugs

icon pl  Patchliner,   icon sp96   SyncroPatch 384PE and   Icon CE   CardioExcyte 96 publication in Channels (2015)

Authors: 
Obergrussberger A., Stölzle-Feix S., Becker N., Brüggemann A., Fertig N., Möller C.

 

Journal: 
Channels (2015) 9(6):1-9


Abstract: 

Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok