• Patchliner

    Most versatile automated patch clamp system on the market
  • Patchliner

    In-house production and QC of consumables
  • Patchliner

    More than 10 years experience in assay design and support
  • Dynamite8

    Automated Dynamic Clamp
  • Patchliner

    All features & benefits of manual patch clamp

2017 - Correlation between human ether-a-go-go related gene channel inhibition and action potential prolongation

icon pl   Patchliner publication in British Journal of Pharmacology (2017)

Saxena P., Hortigon‐Vinagre M.P., Beyl S.,Baburin I., Andranovits S., Iqbal S.M., Costa A., IJzerman A.P., Kügler P., Timin E., Smith G.L., Hering S.

British Journal of Pharmacology (2017) 174(18):3081-3093


Human ether-a-go-go-related gene (hERG; Kv 11.1) channel inhibition is a widely accepted predictor of cardiac arrhythmia. hERG channel inhibition alone is often insufficient to predict pro-arrhythmic drug effects. This study used a library of dofetilide derivatives to investigate the relationship between standard measures of hERG current block in an expression system and changes in action potential duration (APD) in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The interference from accompanying block of Cav1.2 and Nav1.5 channels was investigated along with an in silico AP model.

Drug-induced changes in APD were assessed in hiPSC-CMs using voltage-sensitive dyes. The IC50 values for dofetilide and 13 derivatives on hERG current were estimated in an HEK293 expression system. The relative potency of each drug on APD was estimated by calculating the dose (D150 ) required to prolong the APD at 90% (APD90 ) repolarization by 50%.

The D150 in hiPSC-CMs was linearly correlated with IC50 of hERG current. In silico simulations supported this finding. Three derivatives inhibited hERG without prolonging APD, and these compounds also inhibited Cav1.2 and/or Nav1.5 in a channel state-dependent manner. Adding Cav 1.2 and Nav 1.2 block to the in silico model recapitulated the direction but not the extent of the APD change.

Potency of hERG current inhibition correlates linearly with an index of APD in hiPSC-CMs. The compounds that do not correlate have additional effects including concomitant block of Cav1.2 and/or Nav1.5 channels. In silico simulations of hiPSC-CMs APs confirm the principle of the multiple ion channel effects.

Download here

Back to Overview



We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.