• Patchliner

    Most versatile automated patch clamp system on the market
  • Patchliner

    In-house production and QC of consumables
  • Patchliner

    More than 10 years experience in assay design and support
  • Dynamite8

    Automated Dynamic Clamp
  • Patchliner

    All features & benefits of manual patch clamp

2018 - Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death

icon pl   Patchliner publication in PNAS (2018)

Richards K.L., Milligan C.J., Richardson R.J., Jancovski N., Grunnet M., Jacobson L.H., Undheim E.A.B., Mobli M., Chow C.Y., Herzig V., Csoti A., Panyi G., Reid A.A., King G.F., Petrou S.

PNAS (2018) pii: 201804764. doi: 10.1073/pnas.1804764115. [Epub ahead of print] 


Spider venom is a rich source of peptides, many targeting ion channels. We assessed a venom peptide, Hm1a, as a potential targeted therapy for Dravet syndrome, the genetic epilepsy linked to a mutation in the gene encoding the sodium channel alpha subunit NaV1.1. Cell-based assays showed Hm1a was selective for hNaV1.1 over other sodium and potassium channels. Utilizing a mouse model of Dravet syndrome, Hm1a restored inhibitory neuron function and significantly reduced seizures and mortality in heterozygote mice. Evidence from the structure of Hm1a and modeling suggest Hm1a interacts with NaV1.1 inactivation domains, providing a structural correlate of the functional mechanisms. This proof-of-concept study provides a promising strategy for future drug development in genetic epilepsy and other neurogenetic disorders.


Dravet syndrome is a catastrophic, pharmacoresistant epileptic encephalopathy. Disease onset occurs in the first year of life, followed by developmental delay with cognitive and behavioral dysfunction and substantially elevated risk of premature death. The majority of affected individuals harbor a loss-of-function mutation in one allele of SCN1A, which encodes the voltage-gated sodium channel NaV1.1. Brain NaV1.1 is primarily localized to fast-spiking inhibitory interneurons; thus the mechanism of epileptogenesis in Dravet syndrome is hypothesized to be reduced inhibitory neurotransmission leading to brain hyperexcitability. We show that selective activation of NaV1.1 by venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons. Intracerebroventricular infusion of Hm1a rescues Dravet syndrome mice from seizures and premature death. This precision medicine approach, which specifically targets the molecular deficit in Dravet syndrome, presents an opportunity for treatment of this intractable epilepsy.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.