• Patchliner

    Most versatile automated patch clamp system on the market
  • Patchliner

    In-house production and QC of consumables
  • Patchliner

    More than 10 years experience in assay design and support
  • Dynamite8

    Automated Dynamic Clamp
  • Patchliner

    All features & benefits of manual patch clamp

2020 - Targeting different binding sites in the CFTR structures allows to synergistically potentiate channel activity

icon pl  Patchliner publication in European Journal of Medicinal Chemistry (2020)

Froux L., Elbahnsi A., Boucherle B., Billet A., Baatallah N., Hoffmann B., Alliot J., Zelli R., Zeinyeh W., Haudecoeur R., Chevalier B., Fortuné A., Mirval S., Simard C., Lehn P., Mornon J-P., Hinzpeter A., Becq F., Callebaut I., Décout J-L.


European Journal of Medicinal Chemistry (2020) doi: 10.1016/j.ejmech.2020.112116


  • Various types of defects in the CFTR protein cause Cystic Fibrosis.
  • These defects may be addressed by targeting different sites on the protein structure.
  • Occupying different sites by small molecules synergistically restores CFTR function.


Recent evidence shows that combination of correctors and potentiators, such as the drug ivacaftor (VX-770), can significantly restore the functional expression of mutated Cystic Fibrosis Transmembrane conductance Regulator (CFTR), an anion channel which is mutated in cystic fibrosis (CF). The success of these combinatorial therapies highlights the necessity of identifying a broad panel of specific binding mode modulators, occupying several distinct binding sites at structural level. Here, we identified two small molecules, SBC040 and SBC219, which are two efficient cAMP-independent potentiators, acting at low concentration of forskolin with EC50 close to 1 μM and in a synergic way with the drug VX-770 on several CFTR mutants of classes II and III. Molecular dynamics simulations suggested potential SBC binding sites at the vicinity of ATP-binding sites, distinct from those currently proposed for VX-770, outlining SBC molecules as members of a new family of potentiators.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.