• Port-a-Patch

    Smallest patch clamp setup in the world
  • Port-a-Patch

    Easy to learn - ideal for teaching
  • Port-a-Patch

    Records from cells, organelles and bilayers
  • Port-a-Patch

    First planar patch clamp device on the market
  • Port-a-Patch

    Ideal for internal solution exchange applications

2016 - Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel

icon pap  Port-a-Patch publication in Proceedings of the National Academy of Sciences of the United States of America (2016)

Authors: 
Vaisey G., Miller A.N., Long S.B.

 

Journal: 
PNAS (2016) 103(47):e7399-e7408


Abstract: 

Cytoplasmic calcium (Ca2+) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca2+-independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca2+ activation and ion selectivity. A “Ca2+ clasp” within the channel’s intracellular region acts as a sensor of cytoplasmic Ca2+. Alanine substitutions within a hydrophobic “neck” of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca2+. We conclude that the primary function of the neck is as a “gate” that controls chloride permeation in a Ca2+-dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel’s ion selectivity. We find that mutation of a cytosolic “aperture” of the pore does not perturb the Ca2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single “selectivity filter,” in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

Significance:

BEST1 is a Ca2+-activated chloride channel found in a variety of cell types that allows chloride to traverse the plasma membrane. Mutations in BEST1 can cause macular degeneration. The mechanisms for anion selectivity and Ca2+-dependent activation of BEST1 are unknown. Here, we show that a hydrophobic “neck” region of the channel’s pore does not play a major role in ion selectivity but acts as an effective gate, responding to Ca2+ binding at a cytosolic sensor. Mutation of a cytosolic “aperture” dramatically affects relative permeabilities among anions. These insights help rationalize how disease-causing mutations in BEST1 affect channel behavior and contribute to a broader understanding of ion channel gating and selectivity mechanisms.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok