• Port-a-Patch

    Smallest patch clamp setup in the world
  • Port-a-Patch

    Easy to learn - ideal for teaching
  • Port-a-Patch

    Records from cells, organelles and bilayers
  • Port-a-Patch

    First planar patch clamp device on the market
  • Port-a-Patch

    Ideal for internal solution exchange applications

2014 - Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells

icon pap  Port-a-Patch publication in Cellular Signalling (2014)

Authors:
Mergler S., Derckx R., Reinach P.S., Garreis F., Böhm A., Schmelzer L., Skosyrski S., Ramesh N., Abdelmessih S., Polat O.K., Khajavi N., Riechardt A.I.

 

Journal: 
Cell Signal (2014) 26(1):56-69


Abstract: 

Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca2+ channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca2+ permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca2+ transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca2+ transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La3+, capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca2+ transients, which were suppressed by La3+ and CPZ whereas CAP-induced Ca2+ transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok