Fully automated data recording and analysis. 10,000 data points per day!
  • SURFE²R 96SE

    First high throughput instrument on the market for SSM-based electrophysiology
  • SURFE²R 96SE

    Finally high throughput label-free functional assays for transporters available
  • SURFE²R 96SE

    High signal amplification compared to patch-clamp: transport & binding assays
  • SURFE²R 96SE

    Turn-key system for efficient transporter protein analysis

2018 - In vitro pharmacological characterization of the bispyridinium non-oxime compound MB327 and its 2- and 3-regioisomers

Icon 96SE  SURFE²R 96SE publication in Toxicology Letters (2018)

Niessen K.V., Seeger T. Rappenglück S., Wein T., Höfner G., Wanner K.T., Thiermanna H., Worek F.


Toxicology Letters (2018) 293: 190 - 197


  • Tert-butylpyridinium propane regioisomers are pharmacologically characterized
  • The pharmacology of the tested regioisomers is relatively comparable.
  • The different methods allow an insight into the receptor-mediated interactions.


The primary toxic mechanism of organophosphorus compounds, i.e. nerve agents or pesticides, is based on the irreversible inhibition of acetylcholinesterase. In consequence of the impaired hydrolysis, the neurotransmitter acetylcholine accumulates in cholinergic synapses and disturbs functional activity of nicotinic and muscarinic acetylcholine receptors by overstimulation and subsequent desensitization. The resulting cholinergic syndrome will become acute life-threatening, if not treated adequately. The current standard treatment, consisting of administration of a competitive mAChR antagonist (e.g. atropine) and an oxime (e.g. obidoxime, pralidoxime), is not sufficient in the case of soman or tabun intoxications. Consequently, alternative therapeutic options are necessary. An innovative approach comprises the use of compounds selectively targeting nAChRs, especially positive allosteric modulators, which increase the population of the conducting receptor state. MB327 (1,1′-(propane-1,3-diyl)bis(4-tert-butylpyridinium) di(iodide)) is able to restore soman-blocked muscle-force in preparations of various species including human and was recently identified as “resensitizer”. In contrast to the well-studied MB327, the pharmacological efficacy of the 2- and 3-tert-butylpyridinium propane regioisomers is unknown. As a first step, MB327 and its 3-regioisomer (PTM0001) and 2-regioisomer (PTM0002) were pharmacologically characterized using [3H]epibatidine binding assays, functional studies by solid supported membranes based electrophysiology, and in vitro muscle-force investigations of soman-poisoned rat hemidiaphragm preparations by indirect field stimulation technique. The results obtained from targets of different complexity (receptor, muscle tissue) showed that the pharmacological profiles of the 2- and 3-regioisomers were relatively similar to those of MB327. Furthermore, high concentrations showed inhibitory effects, which might critically influence the application as an antidote. Thus, more effective drugs have to be developed. Nevertheless, the combination of the methods presented is an effective tool for clarifying structure-activity relationships.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.