• SURFE²R N1

    Easy-to-learn all-in-one device, ideal for teaching and university research
  • SURFE²R N1

    Finally label-free functional assays for transporters available
  • SURFE²R N1

    High signal amplification compared to patch-clamp: transport & binding assays
  • SURFE²R N1

    The only instrument on the market for SSM-based electrophysiology
  • SURFE²R N1

    Turn-key system for efficient transporter protein analysis

2010 - Electrophysiology of respiratory chain complexes and the ADP-ATP exchanger in native mitochondrial membranes

Icon N1   SURFE²R ONE (a predecessor model of SURFE²R N1) publication in Biochemistry (2010)

Authors:
Watzke N., Diekert K., Obrdlik P.

Journal:
Biochemistry (2010) 49(48):10308-10318


Abstract:

Transport of protons and solutes across mitochondrial membranes is essential for many physiological processes. However, neither the proton-pumping respiratory chain complexes nor the mitochondrial secondary active solute transport proteins have been characterized electrophysiologically in their native environment. In this study, solid-supported membrane (SSM) technology was applied for electrical measurements of respiratory chain complexes CI, CII, CIII, and CIV, the F(O)F(1)-ATPase/synthase (CV), and the adenine nucleotide translocase (ANT) in inner membranes of pig heart mitochondria. Specific substrates and inhibitors were used to validate the different assays, and the corresponding K(0.5) and IC(50) values were in good agreement with previously published results obtained with other methods. In combined measurements of CI-CV, it was possible to detect oxidative phosphorylation (OXPHOS), to measure differential effects of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the respective protein activities, and to determine the corresponding IC(50) values. Moreover, the measurements revealed a tight functional coupling of CI and CIII. Coenzyme Q (CoQ) analogues decylubiquinone (DBQ) and idebenone (Ide) stimulated the CII- and CIII-specific electrical currents but had inverse effects on CI-CIII activity. In summary, the results describe the electrophysiological and pharmacological properties of respiratory chain complexes, OXPHOS, and ANT in native mitochondrial membranes and demonstrate that SSM-based electrophysiology provides new insights into a complex molecular mechanism of the respiratory chain and the associated transport proteins. Besides, the SSM-based approach is suited for highly sensitive and specific testing of diverse respiratory chain modulators such as inhibitors, CoQ analogues, and uncoupling agents.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.