• SURFE²R N1

    Easy-to-learn all-in-one device, ideal for teaching and university research
  • SURFE²R N1

    Finally label-free functional assays for transporters available
  • SURFE²R N1

    High signal amplification compared to patch-clamp: transport & binding assays
  • SURFE²R N1

    The only instrument on the market for SSM-based electrophysiology
  • SURFE²R N1

    Turn-key system for efficient transporter protein analysis

2016 - Electrogenic Cation Binding in the Electroneutral Na+/H+ Antiporter of Pyrococcus abyssi

Icon N1  SURFE²R-technology (custom-built system) publication in Journal of Biological Chemistry (2016)

Authors:
Călinescu O., Linder M., Wöhlert D., Yildiz Ö., Kühlbrandt W., Fendler K.

Journal:
PLoS ONE (2014) 9(7):e101575


Abstract:

Na+/H+ antiporters in the CPA1 branch of the cation proton antiporter family drive the electroneutral exchange of H+ against Na+ ions and ensure pH homeostasis in eukaryotic and prokaryotic organisms. Although their transport cycle is overall electroneutral, specific partial reactions are electrogenic. Here, we present an electrophysiological study of the PaNhaP Na+/H+ antiporter from Pyrococcus abyssi reconstituted into liposomes. Positive transient currents were recorded upon addition of Na+ to PaNhaP proteoliposomes, indicating a reaction where positive charge is rapidly displaced into the proteoliposomes with a rate constant of k >200 s-1 We attribute the recorded currents to an electrogenic reaction that includes Na+ binding and possibly occlusion. Subsequently, positive charge is transported out of the cell associated with H+ binding, so that the overall reaction is electroneutral. We show that the differences in pH profile and Na+ affinity of PaNhaP and the related MjNhaP1 from Methanocaldococcus jannaschii can be attributed to an additional negatively charged glutamate residue in PaNhaP. The results are discussed in the context of the physiological function of PaNhaP and other microbial Na+/H+ exchangers. We propose that both, electroneutral and electrogenic Na+/H+ antiporters, represent a carefully tuned self-regulatory system, which drives the cytoplasmic pH back to neutral after any deviation.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.