Easy-to-learn all-in-one device, ideal for teaching and university research
  • SURFE²R N1

    Finally label-free functional assays for transporters available
  • SURFE²R N1

    High signal amplification compared to patch-clamp: transport & binding assays
  • SURFE²R N1

    The only instrument on the market for SSM-based electrophysiology
  • SURFE²R N1

    Turn-key system for efficient transporter protein analysis

2010 - Delineating electrogenic reactions during lactose/H+ symport

Icon N1  SURFE²R-technology (custom-built system) publication in Biochemistry (2010)

Garcia-Celma J.J., Ploch J., Smirnova I., Kaback H.R., Fendler K.

Biochemistry (2010) 49(29):6115-6121


Electrogenic reactions accompanying downhill lactose/H+ symport catalyzed by the lactose permease of Escherichia coli (LacY) have been assessed using solid-supported membrane-based electrophysiology with improved time resolution. Rates of charge translocation generated by purified LacY reconstituted into proteoliposomes were analyzed over a pH range from 5.2 to 8.5, which allows characterization of two electrogenic steps in the transport mechanism: (i) a weak electrogenic reaction triggered by sugar binding and observed under conditions where H+ translocation is abolished either by acidic pH or by a Glu325 → Ala mutation in the H+ binding site (this step with a rate constant of ∼200 s−1 for wild-type LacY leads to an intermediate proposed to represent an “occluded” state) and (ii) a major electrogenic reaction corresponding to 94% of the total charge translocated at pH 8, which is pH-dependent with a maximum rate of ∼30 s−1 and a pK of 7.5. This partial reaction is assigned to rate-limiting H+ release on the cytoplasmic side of LacY during turnover. These findings together with previous electrophysiological results and biochemical−biophysical studies are included in an overall kinetic mechanism that allows delineation of the electrogenic steps in the reaction pathway.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.