• Research Ins]i[ghts: Nanion’s Transporter Webinar Series 2021
    Register for Session 4 Here

  • SURFE²R N1

    Easy-to-learn all-in-one device, ideal for teaching and university research
  • SURFE²R N1

    Finally label-free functional assays for transporters available
  • SURFE²R N1

    High signal amplification compared to patch-clamp: transport & binding assays
  • SURFE²R N1

    The only instrument on the market for SSM-based electrophysiology
  • SURFE²R N1

    Turn-key system for efficient transporter protein analysis

2021 - Engineering and functional characterization of a proton-driven β-lactam antibiotic translocation module for bionanotechnological applications

 Icon N1   SURFE2R N1 publication in Nature Scientific Reports (2021)

Authors:
Stauffer M., Ucurum Z., Harder D., Fotiadis D.

Journal:

Nature Scientific Reports (2021) doi: 10.1038/s41598-021-96298-4


Abstract: 

Novel approaches in synthetic biology focus on the bottom-up modular assembly of natural, modified natural or artificial components into molecular systems with functionalities not found in nature. A possible application for such techniques is the bioremediation of natural water sources contaminated with small organic molecules (e.g., drugs and pesticides). A simple molecular system to actively accumulate and degrade pollutants could be a bionanoreactor composed of a liposome or polymersome scaffold combined with energizing- (e.g., light-driven proton pump), transporting- (e.g., proton-driven transporter) and degrading modules (e.g., enzyme). This work focuses on the engineering of a transport module specific for β-lactam antibiotics. We previously solved the crystal structure of a bacterial peptide transporter, which allowed us to improve the affinity for certain β-lactam antibiotics using structure-based mutagenesis combined with a bacterial uptake assay. We were able to identify specific mutations, which enhanced the affinity of the transporter for antibiotics containing certain structural features. Screening of potential compounds allowed for the identification of a β-lactam antibiotic ligand with relatively high affinity. Transport of antibiotics was evaluated using a solid-supported membrane electrophysiology assay. In summary, we have engineered a proton-driven β-lactam antibiotic translocation module, contributing to the growing toolset for bionanotechnological applications.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.