• SyncroPatch 384

    Next level versatility and flexibility
  • SyncroPatch 384

    True HTS and GigaOhm seals
  • SyncroPatch 384

    Your multi purpose instrument
  • SyncroPatch 384

    Powerful analysis software
  • SyncroPatch 384

    Assay flexibility via high tech
  • SyncroPatch 384

    Heating and cooling of solutions, cells and patch clamp sites

2019 - High Throughput Characterization of KCNB1 Variants Associated with Developmental and Epileptic Encephalopathy

icon sp96  SyncroPatch 768PE (a predecessor model of the SyncroPatch 384/768i) Pre-publication in bioRxiv (2019)

Kang, S.K., Vanoye, C.G., Misra, S.N., Echevarria, D.M., Calhoun, J.D., O’Connor, J.B., Fabre, K.L., McKnight, D., Demmer, L., Goldenberg, P., Grote, L.E., Thiffault, I., Saunders, C., Strauss, K.A., Torkamani, A., van der Smagt, J., van Gassen, K., Carson, R.P., Diaz, J., Leon, E., Jacher, J.E., Hannibal, M.C., Litwin, J., Friedman, N.R., Schreiber, A., Lynch, B., Poduri, A., Marsh, E.D., Goldberg, E.M., Millichap, J.J., George Jr., A.L., Kearney, J.A.

Preprint Source: 
bioRxiv (2019) doi: org/10.1101/637041


Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel Kv2.1, are associated with developmental and epileptic encephalopathies (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. We evaluated a series of 17 KCNB1 variants associated with DEE or neurodevelopmental disorder (NDD) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant Kv2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage-dependence of activation and/or inactivation, as homotetramers or when co-expressed with wild-type Kv2.1. Quantification of protein expression also identified variants with reduced total Kv2.1 expression or deficient cell-surface expression.

Our study establishes a platform for rapid screening of functional defects of KCNB1 variants associated with DEE and other NDDs, which will aid in establishing KCNB1 variant pathogenicity and may enable discovery of targeted strategies for therapeutic intervention based on molecular phenotype.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.