• SyncroPatch 384

    Next level versatility and flexibility
  • SyncroPatch 384

    True HTS and GigaOhm seals
  • SyncroPatch 384

    Your multi purpose instrument
  • SyncroPatch 384

    Powerful analysis software
  • SyncroPatch 384

    Assay flexibility via high tech
  • SyncroPatch 384

    Heating and cooling of solutions, cells and patch clamp sites

2022 - β subunits of GABAA receptors form proton-gated chloride channels: Insights into the molecular basis

icon sp96 SyncroPatch 384 publication in Communications Biology (2022)

Garifulina A., Friesacher T., Stadler1 M., Zangerl-Plessl E., Ernst M., Stary-Weinzinger A., Willam A., Hering S.

Communications Biology (2022) doi:10.1038/s42003-022-03720-2


Gamma-aminobutyric acid type A receptors (GABAARs) are ligand gated channels mediating inhibition in the central nervous system. Here, we identify a so far undescribed function of β-subunit homomers as proton-gated anion channels. Mutation of a single H267A in β3 subunits completely abolishes channel activation by protons. In molecular dynamic simulations of the β3 crystal structure protonation of H267 increased the formation of hydrogen bonds between H267 and E270 of the adjacent subunit leading to a pore stabilising ring formation and accumulation of Cl- within the transmembrane pore. Conversion of these residues in proton insensitive ρ1 subunits transfers proton-dependent gating, thus highlighting the role of this interaction in proton sensitivity. Activation of chloride and bicarbonate currents at physiological pH changes (pH50 is in the range 6- 6.3) and kinetic studies suggest a physiological role in neuronal and non-neuronal tissues that express beta subunits, and thus as potential novel drug target.

Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.