• SyncroPatch 384

    Next level versatility and flexibility
  • SyncroPatch 384

    True HTS and GigaOhm seals
  • SyncroPatch 384

    Your multi purpose instrument
  • SyncroPatch 384

    Powerful analysis software
  • SyncroPatch 384

    Assay flexibility via high tech
  • SyncroPatch 384

    Heating and cooling of solutions, cells and patch clamp sites

2022 - Missense mutations in PIEZO1, encoding the Piezo1 mechanosensor protein, define the Er red blood cell antigens

icon sp96  SyncroPatch 384PE (a predecessor model of the SyncroPatch 384 instrument) Publication in Blood (2022)

Authors:
Crew V., Tilley L., Satchwell T., AlSubhi S., Jones B., Spring F., Walser P., Freire C., Murciano N., Rotordam M., Woestmann S., Hamed M., Alradwan R., AlKhrousey M., Skidmore I., Lewis S., Hussain S., Jackson J., Latham T., Kilby M., Lester W., Becker N., Rapedius M., Toye A., Thornton N.

Journal:
Blood (2022) doi:10.1182/blood.2022016504


Abstract: 

Despite the identification of the high incidence red cell antigen Era nearly 40 years ago, the molecular background of this antigen, together with the other two members of the Er blood group collection, has yet to be elucidated. Whole exome and Sanger sequencing of individuals with serologically defined Er alloantibodies identified several missense mutations within the PIEZO1 gene, encoding amino acid substitutions within the extracellular domain of the Piezo1 mechanosensor ion channel. Confirmation of Piezo1 as the carrier molecule for the Er blood group antigens was demonstrated using immunoprecipitation, CRISPR/Cas9-mediated gene knockout and expression studies in an erythroblast cell line. We report the molecular bases of five Er blood group antigens: the recognised Era, Erb and Er3 antigens; and two novel high incidence Er antigens, described here as Er4 and Er5, establishing a new blood group system. Anti-Er4 and anti-Er5 are implicated in severe hemolytic disease of the fetus and newborn (HDFN). Demonstration of Piezo1, present at just a few hundred copies on the surface of the red blood cell, as the site of a new blood group system highlights the potential antigenicity of even low abundance membrane proteins and contributes to our understanding of the in vivo characteristics of this important and widely studied protein in transfusion biology and beyond.


Download here

Back to Overview

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.