• SyncroPatch 384/768PE

    APC with highest throughput on the market
  • SyncroPatch 384/768PE

    384 cells in parallel => upgradable to 768
  • SyncroPatch 384/768PE

    True HTS AND Gigaohm seals
  • SyncroPatch 384/768PE

    True internal perfusion with continuous data acquisition
  • SyncroPatch 384/768PE

    Assay flexibility via high tech

2018 - NaV Channels: Assaying Biosynthesis, Trafficking, Function

icon sp96   SyncroPatch 384PE article in The Surfaceome (2018)

Authors:
Tomaselli G.F., Farinelli F.

Book chapter:
In: The Surfaceome (2018), chapter: "NaV Channels: Assaying Biosynthesis, Trafficking, Function" pp 167-184


Abstract:

Integral to the cell surface is channels, pumps, and exchanger proteins that facilitate the movement of ions across the membrane. Ion channels facilitate the passive movement of ions down an electrochemical gradient. Ion pumps actively use energy to actively translocate ions, often against concentration or voltage gradients, while ion exchangers utilize energy to couple the transport of different ion species such that one ion moves down its gradient and the released free energy is used to drive the movement of a different ion against its electrochemical gradient. Some ion pumps and exchangers may be electrogenic, i.e., the ion transport they support is not electrically neutral and generates a current. Functions of these pore-forming membrane proteins include the establishment of membrane potentials, gating of ions flows across the cell membrane to elicit action potentials and other electrical signals, as well as the regulation of cell volumes. The major forms of ion channels include voltage-, ligand-, and signal-gated channels. In this review, we describe mammalian voltage dependent Na (NaV) channels.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok