• Vesicle Prep Pro

    First product on the market for automated preparation of solvent-free giant unilamellar vesicles (GUVs)
  • Vesicle Prep Pro

    GUVs are homogeneous in size - ideal for different applications

2018 - Hybrid vesicles from lipids and block copolymers: Phase behavior from the micro- to the nano-scale

icon vpp   Vesicle Prep Pro publication in Colloids and Surfaces B: Biointerfaces (2018)

Authors:
Magnani C., Montis C., Mangiapia G., Mingotaud A.-F., Mingotaud C., Roux C., Joseph P., Berti D., Lonetti B.

Journal:
Colloids and Surfaces B: Biointerfaces (2018) in press, doi.org/10.1016/j.colsurfb.2018.01.042


Highlights:

  • Phospholipid (DPPC)-copolymer (PBD-PEO) hybrid assemblies are investigated at different lengthscales.
  • Micron-sized hybrid assemblies are giant vesicles characterized by phase-segregated domains.
  • The domains strongly affect the morphological and viscoelastic properties of GUVs.
  • Nano-sized hybrids are preferentially arranged into worm-like shapes.
  • It is possible to tune the physicochemical-mechanical features of nano- and micro- hybrids.

 

Abstract:

In recent years, there has been a growing interest in the formation of copolymers-lipids hybrid self-assemblies, which allow combining and improving the main features of pure lipids-based and copolymer-based systems known for their potential applications in the biomedical field. In this contribution we investigate the self-assembly behavior of dipalmitoylphosphatidylcholine (DPPC) mixed with poly(butadiene-b-ethyleneoxide) (PBD-PEO), both at the micro- and at the nano-length scale.

Epifluorescence microscopy and Laser Scanning Confocal microscopy are employed to characterize the morphology of micron-sized hybrid vesicles. The presence of fluid-like inhomogeneities in their membrane has been evidenced in all the investigated range of compositions. Furthermore, a microfluidic set-up characterizes the mechanical properties of the prepared assemblies by measuring their deformation upon flow: hybrids with low lipid content behave like pure polymer vesicles, whereas objects mainly composed of lipids show more variability from one vesicle to the other. Finally, the structure of the nanosized assemblies is characterized through a combination of Dynamic Light Scattering, Small Angle Neutron Scattering and Transmission Electron Microscopy. A vesicles-to-wormlike transition has been evidenced due to the intimate mixing of DPPC and PBD-PEO at the nanoscale. Combining experimental results at the micron and at the nanoscale improves the fundamental understanding on the phase behavior of copolymer-lipid hybrid assemblies, which is a necessary prerequisite to tailor efficient copolymer-lipid hybrid devices.


Download here

Back to Overview

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok