The Na\textsubscript{v}1.5 channel, encoded by the SCN5A gene, is a voltage-gated sodium (NaV) channel found in skeletal muscle and heart\cite{1}. It is TTX insensitive with an IC\textsubscript{50} in the micromolar range\cite{1}. Na\textsubscript{v}1.5 is responsible for the upstroke of the cardiac action potential in both ventricular and atrial myocytes\cite{2} and is therefore critical for generation and propagation of the cardiac action potential in human heart. Block of this channel can lead to prolongation of the QRS interval of the electrocardiogram (ECG) and can have profound effects on the rate of cardiac depolarization and conduction velocity, thus causing potentially dangerous cardiac arrhythmias\cite{3,4}. Furthermore, effects of Na\textsubscript{v}1.5 inactivation can modify cardiac repolarization\cite{4}.

Given the importance of this channel in maintaining cardiac function, it has become an important target in compound safety screening.

Local anaesthetics, such as lidocaine, have been shown to exhibit state- and use-dependence when acting on the cardiac sodium channel\cite{5}. The IC\textsubscript{50} was shown to be approximately 30 times lower at depolarized holding potentials where inactivation was almost complete\cite{5}. For this reason, it is important to test potency of compounds at different holding potentials.

Here we present high quality data with reliable pharmacology on hNa\textsubscript{v}1.5 expressing HEK293 cells at a high throughput collected on the SyncroPatch 384PE. Current-voltage plots and concentration response curves for four NaV channel blockers are shown, including lidocaine at different holding potentials.

Summary

The Na\textsubscript{v}1.5 channel, encoded by the SCN5A gene, is a voltage-gated sodium (NaV) channel found in skeletal muscle and heart\cite{1}. It is TTX insensitive with an IC\textsubscript{50} in the micromolar range\cite{1}. Na\textsubscript{v}1.5 is responsible for the upstroke of the cardiac action potential in both ventricular and atrial myocytes\cite{2} and is therefore critical for generation and propagation of the cardiac action potential in human heart. Block of this channel can lead to prolongation of the QRS interval of the electrocardiogram (ECG) and can have profound effects on the rate of cardiac depolarization and conduction velocity, thus causing potentially dangerous cardiac arrhythmias\cite{3,4}. Furthermore, effects of Na\textsubscript{v}1.5 inactivation can modify cardiac repolarization\cite{4}.

Given the importance of this channel in maintaining cardiac function, it has become an important target in compound safety screening.

Local anaesthetics, such as lidocaine, have been shown to exhibit state- and use-dependence when acting on the cardiac sodium channel\cite{5}. The IC\textsubscript{50} was shown to be approximately 30 times lower at depolarized holding potentials where inactivation was almost complete\cite{5}. For this reason, it is important to test potency of compounds at different holding potentials.

Results

For the evaluation of the performance of hNa\textsubscript{v}1.5 (HEK293) cells, Seal Resistance, C\textsubscript{slow} and the Series Resistance (R\textsubscript{series}) were determined from one experiment (Fig. 1).

Figure 1: Statistics of hNa\textsubscript{v}1.5 expressing HEK cells recorded on one NPC-384 chip on the SyncroPatch® 384PE

A Success rate (seal resistance) of individual HEK cells on the SyncroPatch 384PE. Shown is a bar graph of seal resistances at the start (light blue) and end of the experiment (dark blue).

B Bar graph of C\textsubscript{slow} and **C** R\textsubscript{series} values for HEK cells expressing hNa\textsubscript{v}1.5.
Currents mediated by hNa\(1.5\) could be reliably recorded on the SyncroPatch 384PE with a high success rate. Figure 2 shows the current-voltage relationship of hNa\(1.5\) expressed in HEK293 cells recorded on the SyncroPatch 384PE. An average activation and inactivation IV plot is shown in Panels C and D, respectively. The \(V_{\text{half}}\) of activation was -51 mV and for inactivation was -84 mV in good agreement with the literature\(^6\).

Pharmacology of the hNa\(_{1.5}\) channel could be performed on the SyncroPatch 384PE with success rates of up to 76% for completed experiments. Figure 3 shows the concentration response curves for four Na\(_V\) channel blockers on Na\(_V\)\(_{1.5}\)-mediated currents. In these experiments holding potential was -120 mV. The IC\(_{50}\) values are summarised in Table 1.
Figure 5: Graphical user interface of the screening and data analysis software used on the SyncroPatch 384PE. Screenshot of depiction of online analysis data of Na\(_V\)1.5 expressing HEK293 cells as recorded on one NPC-384 patch clamp chip. Three hundred and eighty-four small color-coded pictures as seen in the upper left part display 384 recordings. Depending on the seal resistance, pictures are green (R\(_\text{memb} > 500\) MΩ), blue (R\(_\text{memb} = 100 – 500\) MΩ), light blue or grey (R\(_\text{memb} < 100\) MΩ or cells disabled). One highlighted experiment is displayed at the bottom. 16 selected experiments are displayed on the right. Graphs show current amplitudes of Na\(_V\)1.5 channels during the voltage step to -10mV during application of control solution (white region) and inhibition by lidocaine (blue region).

Figure 6: Timeline of an experiment on the SyncroPatch 384PE. The completion of 1 experiment on the SyncroPatch 384 patch clamp chip (384 wells) for a single point or cumulative concentration response curve on Na\(_V\)1.5-mediated currents took approximately 12-20 min.
Application Note

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC₅₀ (µM)</th>
<th>Success rate (%)</th>
<th>Literature value (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptyline</td>
<td>5.0 (251)</td>
<td>65</td>
<td>1.6²</td>
</tr>
<tr>
<td>Mexiletine</td>
<td>97.3 (241)</td>
<td>63</td>
<td>49⁸</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>295 (291)</td>
<td>76</td>
<td>353³</td>
</tr>
<tr>
<td>Tetracaine</td>
<td>4.5 (264)</td>
<td>69</td>
<td>9.3⁴</td>
</tr>
</tbody>
</table>

Table 2: IC₅₀ values for amitriptyline, mexiletine, lidocaine and tetracaine on Naᵥ₁.5-mediated currents recorded on the SyncroPatch 384PE. Shown are IC₅₀ values (number of cells shown in brackets), success rate for completed experiments and the expected literature IC₅₀ values.

To investigate whether the potency of lidocaine on Naᵥ₁.5 was influenced by holding potential, concentration response curves were constructed at different holding potentials (Fig. 4). As expected⁵, the IC₅₀ for lidocaine was shifted by a factor of >30 using a holding potential of -80 mV vs. -120 mV. The IC₅₀ was not changed when the experiments were performed as cumulative (dashed line) or single point concentration response curves (solid line) at -120 mV.

Figure 5 shows a screenshot of the SyncroPatch 384 software during an experiment. A color-coded overview (based on seal resistance in this case) of all 384 wells gives the user a good impression of the success rate of the experiment. The user can choose whether to visualize raw traces or online analysis. Here, online analysis is chosen and the graphs represent current amplitude vs. time. An individual well can be highlighted to monitor progression of the experiment. In the Online Analysis view, the time points at which solution additions have been made are indicated by vertical lines, as well as different background colors. In this example, white shows incubation in control solution and blue is lidocaine.

In conclusion, hNaᵥ₁.5 expressed in HEK293 cells can be recorded on the SyncroPatch 384PE with high success rates for completed experiments (>70%). The IC₅₀’s of four Naᵥ channel blockers were in good agreement the literature⁵-⁹ and the IC₅₀ for lidocaine was influenced by holding potential⁵.

The SyncroPatch 384PE is a high throughput and highly reliable automated patch clamp device for recording Naᵥ₁.5 currents. User-friendly software, excellent success rates, single additions or multiple additions of compound to each cell, and easy analysis result in reliable high quality data at an increased throughput with an economical cost per data point.

References

Methods

Cells
HEK293 cells expressing hNaᵥ₁.5.

Cell culture
Cells were cultured and harvested according to Nanion’s standard cell culture protocol.

Electrophysiology
Whole cell patch clamp recordings were conducted according to Nanion’s standard procedure for the SyncroPatch 384PE. A voltage step protocol from a holding potential of -120 mV (unless otherwise indicated) to -10 mV was applied to the cells every 5 s for pharmacology experiments. Peak amplitude at -10 mV was used for analysis.