Activation and inhibition of P2X₃ channels recorded on the Patchliner

Summary

P2X receptors are ligand-gated ion channels that open in response to extracellular ATP. They are permeable to small monovalent cations, some having significant divalent or anion permeability. P2X receptors are found on many cell types including smooth muscle cells, sensory neurones, epithelia, bone and leukocytes (for reviews see Refs 1 - 3). A role for P2X receptors has been suggested in transmission of thermal stimuli⁴, chemosensory signalling⁵, taste^{6,7} and pain^{8,9}. To date, 7 P2X receptor genes have been cloned and studied in heterologous expression systems (reviewed in Refs 1 - 3). Functional receptors are trimeric¹⁰, which can be homomeric or heteromeric. The P2X₂ and P2X₃ receptors can function either as homomers or as P2X_{2/3} heteromers. When expressed together, a mixture of P2X₂ and P2X₃ homomers as well as P2X_{2/3} heteromers are likely to exist, which may be distinguished through their biophysical and pharmacological properties. Both P2X₃ homomers and P2X_{2/3} heteromeric receptors have been implicated in nociception and pain signalling and may be important therapeutic targets for analgesic drugs⁶. The P2X₃ and P2X_{2/3} receptor antagonist MK-7264 (gefapixant), has recently progressed to Phase III trials for refractory or unexplained chronic cough¹¹.

Here we present data collected on the Patchliner showing activation and inhibition of P2X₃ currents expressed in CHO cells with rapid and brief application of ligand (using the stacked solution approach). αβ-methylene ATP (αβ-MeATP) activated P2X₃ receptors in a concentration-dependent manner with an EC₅₀ value similar to those in the literature^{2,3,12}. P2X₃ receptors could be repetitively activated by αβ-MeATP and blocked by A-317491 with an IC₅₀ value in good agreement with the literature¹³.

Results

P2X₃ expressed in CHO cells was activated by adding αβ-MeATP using the stacked solutions addition function of the Patchliner. First αβ-MeATP was applied to the cell and this is quickly washed away by buffer solution also present in the pipette. Multiple applications of αβ-MeATP in increasing concentrations (1-300 µM) were made to each well and the concentration response curve (CRC) for an average of 12 cells is shown in Figure 1. The data was fitted using a Hill equation revealing an EC₅₀ = 3.6 ± 0.3 µM (n = 12), for αβ-MeATP in good agreement with the literature^{2,3,12} (Figure 1).

![Figure 1: Activation of P2X₃ expressed in CHO cells on the Patchliner by αβ-MeATP.](image-url)

αβ-MeATP

EC₅₀ = 3.6 ± 0.3 µM (n = 12)

Download more Application Notes from www.nanion.de
For pharmacology experiments, a stable and reproducible peak amplitude is mandatory. We repetitively activated P2X₃ five times with 30 µM αβ-MeATP (Figure 2). Peak amplitude was highly reproducible, varying by no more than 12% from the first application, demonstrating the suitability of the Patchliner for pharmacology experiments.

Figure 2: Stability of P2X₃ recorded on the Patchliner. Raw current traces from an example cell showing current activation by application of 30 µM αβ-MeATP repeated 5 times in the same well.

We used the P2X₃ selective inhibitor A-317491 to block P2X₃-mediated responses. αβ-MeATP was applied 3 times to check for stability followed by pre-incubation with A-317491 and then co-application of A-317491 with αβ-MeATP. Full CRCs were performed on each cell. The CRC for an average of 9 cells is shown in Figure 3. The IC₅₀ for A317491 was 85.9 ± 20.7 nM (n = 9) in excellent agreement with the literature³.

In conclusion, the Patchliner can be used to reliably record P2X₃-mediated responses with activation and inhibition pharmacology in good agreement with the literature. Given the putative role of P2X₃-containing receptors in inflammatory and neuropathic pain⁹, the Patchliner could be used to identify P2X₃-specific inhibitors as potential novel pain therapeutics and to treat other conditions such as chronic cough.

References
5. Prasad et al., 2001. J. Physiol. 537: 3-11
7. Eddy et al., 2009. Chem. Senses. 34: 789-797

Methods

Cells
CHo cells expressing P2X₃ were engineered and kindly provided by Axxam S.p.A., Milan; (https://axxam.com/).

Electrophysiology
Whole cell patch clamp recordings were conducted according to Nanion’s standard procedure for the Patchliner. Cells were held at -70 mV for the duration of the experiment. For αβ-MeATP concentration response curves, 3U/ml hexokinase was used with all concentrations of αβ-MeATP. For pharmacology experiments, cells were pre-incubated in A-317491 for 2 min and then compound was co-applied with 10 µM αβ-MeATP. P2X₃ was activated using the stacked solutions approach. Agonist volume: 5 µl, wash volume: 150 µl, application speed 114 µl/s. Cells were then washed twice with external solution before re-application of agonist.