In 2018 Nanion Technologies ran a contest where researchers from all over the world had the chance to win a SURFE²R N1 platform for a 6-month period to perform transporter research in their own laboratories and with their own scientific scope. Randy Stockbridge and her research group convinced the Nanion team with their application. Shortly after, a system was installed, the assays optimized, and Dr. Randy Stockbridge and her team started with their research project at once.

New ways to explore “old“ targets

In 2018 Nanion Technologies ran a contest where researchers from all over the world had the chance to win a SURFE²R N1 platform for a 6-month period to perform transporter research in their own laboratories and with their own scientific scope. Randy Stockbridge and her research group convinced the Nanion team with their application. Shortly after, a system was installed, the assays optimized, and Dr. Randy Stockbridge and her team started with their research project at once.

Dr. Randy Stockbridge interviewed by Nanion Technologies

NT: Randy, tell us about your research!

RS: My lab focuses on discovering and understanding membrane transport proteins. Membrane transport proteins – channels and energy-coupled pumps – are the molecular gatekeepers of the cell. For microbes afloat in a hostile environment, these proteins import vital nutrients and export dangerous toxins. Bacteria have contended with vast and unusual chemical threats throughout evolutionary time and retain a catalog of idiosyncratic export proteins to deal with hostile elements. Delving deeply into bacterial export systems reveals novel physiologies and structural surprises. By understanding bacteria’s intrinsic vulnerabilities, we can generate new leads on antimicrobials.

We have discovered exporters of two different toxic ions: fluoride (F⁻) and guanidinium (Gdm⁺). Fluoride channels are interesting because they protect bacteria against toxic environmental fluoride ion, and guanidinium ion (cont.) exporters, which have an interesting evolutionary relationship to multidrug exporters involved in antibiotic resistance. We have four big questions:

- what do they look like?
- how do they work?
- how did they evolve?
- what is their biological role?

Figure 1: The SURFE²R N1 platform allows for the investigation of electrogenic membrane transport proteins with high sensitivity. So far over 100 targets have been studied including symporters, exchangers, uniporters, ion pumps and ion channels.
NT: What techniques are you currently using in your scientific work?

RS: Our lab uses a breadth of biochemical and biophysical techniques to study these proteins, including electrophysiology, membrane protein biochemistry, x-ray crystallography, and macromolecular NMR, and since 2018 also the SURFE®R N1 from Nanion Technologies.

NT: What prompted you to enter the competition to win a SURFE®R N1?

RS: We had done the initial characterization of our new family of transporters using radiolabeled substrate uptake, but we needed a more general assay in order to expand beyond commercially available radiolabeled substrates. Since many of the substrates aren’t fluorescent, fluorescence-based methods would not work, and the currents generated by these transporters were not large enough to see with planar lipid bilayer electrophysiology. Because of the sensitivity of the SURFE®R N1 where small electrogenic currents can be measured, it seemed like the ideal device for us to measure this protein.

“...given our difficulties developing a transport assay, I was pessimistic that we were going to be able to move beyond radiolabeled substrates. Contrary to my expectations, electrophysiology with the SURFE®R N1 platform worked right away.”

NT: What was the project you had in mind and did the SURFE®R N1 fulfill your expectations?

RS: We wanted to characterize the electrophysiological characteristics of our new family of transporters to find out properties such as Km and Vmax of the substrate, and ideally to screen a set of substrates for transporter activity. However, given our difficulties in developing a transport assay, I was pessimistic that we were going to be able to move beyond radiolabeled substrates. Contrary to my expectations, electrophysiology with the SURFE®R N1 platform worked right away. We saw very robust currents in our pilot experiments during the initial training session on the instrument. (cont.)
We have been using fluorescence and radiolabeled uptake experiments but these were unsuitable in this case. Now that we’ve started with solid supported membrane (SSM) electrophysiology, this technique has replaced radiolabeled substrate experiments in my lab, to everyone’s benefit. We’re not spending as much money on radiolabeled substrates, the experiments are much faster to perform, with fewer regulatory headaches. And my graduate student vastly prefers doing SSM electrophysiology experiments, too!

NT: Are there other techniques you could have used for this project? If so, what are they and what are the benefits of the SURFE^{2}R N1 over these other techniques?

RS: We have been using fluorescence and radiolabeled uptake experiments but these were unsuitable in this case. Now that we’ve started with solid supported membrane (SSM) electrophysiology, this technique has replaced radiolabeled substrate experiments in my lab, to everyone’s benefit. We’re not spending as much money on radiolabeled substrates, the experiments are much faster to perform, with fewer regulatory headaches. And my graduate student vastly prefers doing SSM electrophysiology experiments, too!

NT: How was the support you received from Nanion?

RS: The support we got from Nanion Technologies was really comprehensive; in addition to an in-depth training session at the start of the SURFE^{2}R N1 demo period, they worked with my graduate student to analyze and interpret the data and develop the proper controls over the 6-month period that we collected data with the instrument.

“Now that we’ve started with solid supported membrane (SSM) electrophysiology, this technique has replaced radiolabeled substrate experiments in my lab, to everyone’s benefit. We’re not spending as much money on radiolabeled substrates, the experiments are much faster to perform, with fewer regulatory headaches. And my graduate student vastly prefers doing SSM electrophysiology experiments, too!”

Figure 3: Experiments on the SURFE{^2}R N1 in Dr. Randy Stockbridge’s laboratory. Here, Chris Macdonald is recording the bacterial guanidium transporter.

Figure 4: The image shows SSM (solid supported membrane) electrophysiology measurements of Gdx transporter reactions on the SURFE{^2}R N1. (A) Raw data traces showing activation by application of 1 mM Gdm{^+}. In (B) and (C) the concentration dependent current responses and the corresponding K_m-plot are shown.

"...we were quickly able to push the project in exciting, unexpected directions by screening a large family of structurally related substrates for transport."
RS: I also work on a family of microbial fluoride channels. I’ve primarily characterized these proteins using planar lipid bilayer electrophysiology. However, the SURFE2R N1 is so sensitive that I can monitor currents at much lower substrate concentrations (a few micromolar). We’re interested in probing channel function at sub-saturating ion concentrations using the SURFE2R N1.

I’ve also had several inquiries from colleagues interested in using the SURFE2R N1 for various applications, including measuring transporter or ion channel currents in organelles or membrane vesicles.

NT: Do you have any further projects in mind that you would like to use the SURFE2R N1 for? If so, can you tell us a bit more about them?

RS: The SURFE2R N1 fills a niche that other transport techniques do not. I would definitively recommend it.

“*The SURFE2R N1 fills a niche that other transport techniques do not. I would definitively recommend it.*”

Acknowledgement

We thank Dr. Stockbridge for letting us use images and data, and for the very nice conversation!