• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

NaV1.7 - "Patch clamp recordings of hNaV1.7 on Nanion’s Port-a-Patch"

icon pap   Port-a-Patch application note   logo pdf   (0.7 MB)
Cells were kindly provided by Anaxon

Summary:

The NaV1.7 gene (SCN9A) encodes a voltage-gated sodium (NaV) channel, primarily expressed in the peripheral nervous system and has been isolated from rat dorsal root ganglion (DRG) neurons, human medullary thyroid cancer cells (hNE-Na)  and PC12 cells. Different NaV channels play a key role in modulation of action potentials in the central and peripheral nervous systems. In particular, the fast upstroke of the action potential is mediated by NaV channels. NaV channels are in part characterized by their TTX-sensitivity (TTX-resistant [TTXr], TTX-sensitive [TTXs]). NaV1.7 is a TTXs channel and is sensitive to TTX in the  nanomolar range. The role of hNaV1.7 has yet to be fully elucidated but is proposed to play an important role in nociception and pain sensing. NaV1.7 has been implicated to play a role in disease pain states, in particular inflammatory pain and hypersensitivity to heat following burn injury. Common to many of the voltagegated ion channels, a number of compounds display a  higher affinity for the inactivated state of the channel. For this reason, it is important to be able to reliably record both activation and inactivation kinetics of the channel. In this Application Note we present data using the Port-a-Patch characterizing CHO cells stably expressing hNaV1.7. The hNaV1.7 activation and inactivation properties and TTX sensitivity are consistent with those reported in the literature.

Back

 

Nanion コーポレートブログ

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.