• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

Our Product Portfolio

SyncroPatch 384/768PE

SyncroPatch 384/768PE

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

CardioExcyte 96

CardioExcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Cardiomyocytes - "Combining automated patch clamp, impedance and EFP of hiPSC-CMs"

Icon CE   CardioExcyte 96   icon sp96   SyncroPatch 3984PE   icon pl   Patchliner Application Note 
Cells kindly provided by Takara-Clonetech.

 Summary:

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are gaining interest in cardiac safety screening. Given their recapitulation of native behavior, availability, ease of use and standardized production, they are likely to provide a viable alternative to acutely isolated cardiomyocytes to assess the pro-arrhythmic potentials of drug candidates. In 2013 the Comprehensive In-vitro Proarrhythmia Assay (CiPA) was introduced to provide a more complete assessment of pro- arrythmic risk by evaluating and implementing currently available high throughput methods and evaluating the potential use of hiPSC-CMs as a model  system for cardiac safety testing. Until now, drug safety testing has focussed on interaction with the hERG channel and QT prolongation which can lead to potentially fatal torsades de pointes (TdP). Although this approach has been largely successful in preventing new drugs reaching the market with unexpected potential to cause TdP, it is also possible that potentially valuable therapeutics have failed due to this early screening. The CiPA initiative has proposed an expansion of patch clamp assessment beyond hERG to include, e.g. NaV1.5 and CaV1.2. In addition, techniques such as multi-electrode array (MEA) and impedance are being thoroughly evaluated as complementary techniques to patch clamp.
Here we present data recorded using the automated patch clamp platforms, the Patchliner, SyncroPatch 96 and SyncroPatch 384PE on Cellartis® Cardiomyocytes (Takara Bio Europe Cat nr. Y10075). Recordings of NaV1.5 and CaV1.2 are shown.  Impedance and EFP recordings were also performed using the CardioExcyte 96, and the effects of verapamil and sotalol are shown.

Back

 

Nanion コーポレートブログ

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok