• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2017 - Mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells: reversal by non-steroidal anti-inflammatory drugs

icon pap   Port-a-Patch publication in Oncotarget (2017)

Authors:
Hernández-Morales M., Sobradillo D., Valero R.A., Muñoz E., Ubierna D., Moyer M.P., Núñez L., Villalobos C.

Journal: 
Oncotarget (2017) 8:55332-55352


Abstract:

Tumor cells undergo a critical remodeling of intracellular Ca2+ homeostasis that contribute to important cancer hallmarks. Store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway modulated by mitochondria, is dramatically enhanced in colon cancer cells. In addition, most cancer cells display the Warburg effect, a metabolic switch from mitochondrial metabolism to glycolysis that provides survival advantages. Accordingly, we investigated mitochondria control of store-operated currents (SOCs) in two cell lines previously selected for representing human normal colonic cells and colon cancer cells. We found that, in normal cells, mitochondria are important for SOCs activity but they are unable to prevent current inactivation. In contrast, in colon cancer cells, mitochondria are dispensable for SOCs activation but are able to prevent the slow, Ca2+-dependent inactivation of SOCs. This effect is associated to increased ability of tumor cell mitochondria to take up Ca2+ due to increased mitochondrial potential (ΔΨ) linked to the Warburg effect. Consistently with this view, selected non-steroidal anti-inflammatory drugs (NSAIDs) depolarize mitochondria, inhibit mitochondrial Ca2+ uptake and promote SOC inactivation, leading to inhibition of both SOCE and cancer cell proliferation. Thus, mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells and this effect is counteracted by selected NSAIDs providing a mechanism for cancer chemoprevention.


Download here

Back

 

 

Nanion コーポレートブログ

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.