• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2015 - Different Ligands of the TRPV3 Cation Channel Cause Distinct Conformational Changes As Revealed by Intrinsic Tryptophan Fluorescence Quenching

icon pap  Port-a-Patch and   icon vpp   Vesicle Prep Pro publication in Journal of Biological Chemistry (2015)

Authors: 
Billen B., Brams M., Debaveye S., Remeeva A., Alpizar Y.A., Waelkens E., Kreir M., Brüggemann A., Talavera K., Nilius B., Voets T., Ulens C.

 

Journal: 
J Biol Chem. (2015) 290:12964-12974


Abstract: 

TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane protein c are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies.


Download here

Back

Nanion コーポレートブログ

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.