• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2018 - Towards Novel Bioactive Antiperspirants for Cosmetic Applications

icon sp96   SyncroPatch 384PE (a predecessor model of SyncroPatch 384i) publication in IFSCC (2018)

Authors:
Ertongur-Fauth T., Fischer S., Hartmann D., Brüggemann A., Seeger V., Kleber A., Krohn M.

Journal:
International Federation of Societies of Cosmetic Chemists Magazine (2018) 21(3):75-79


Abstract:

Sweating is a fundamental process required for human thermoregulation. In today’s modern society, however, extensive sweating is rather considered unpleasant or embarrassing, or can even cause severe psychosocial pressure. Sweat reduction by antiperspirants is therefore of huge cosmetic interest. Currently, the global use of aluminum salts as antiperspirants is controversial, but no alternatives exist so far. We developed a new concept for sweat reduction which is based on directly targeting primary fluid secretion in human sweat glands. We identified a long searched for key player in human sweat glands - the ion channel TMEM16A, also known as ANO1. We extensively characterized TMEM16A and its function in native human sweat glands and sweat gland tissue culture cells by using a wide variety of different techniques such as immunohistological staining, chloride flux assays, automated patch clamping as well as state-of-the-art CRISPR/ Cas9 genome editing technology. We generated a proprietary cell-based assay to emulate TMEM16A function in a cellular sweat gland environment. We combined this cell-based assay with our cherry-picked compound libraries and performed high-throughput screening campaigns which uncovered smallmolecule modulators of TMEM16A. In silico and in vitro toxicological assessments as well as stability and formulation tests were performed and yielded compounds that are currently being tested for their sweat reduction efficacy in vivo.


Download here

Back

Nanion コーポレートブログ

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies).

You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.