• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2019 - The Mechanisms of Action of Triindolylmethane Derivatives on Lipid Membranes

 icon vpp   Vesicle Prep Pro Publication in Acta Naturae (2019)

Authors:
Efimova, S.S. Tertychnaya T.E., Lavrenov S.N., Ostroumova, O.S.

Journal:
Acta Naturae (2019) 11(3): 38–45


Abstract:

The effects of new synthetic antibacterial agents – tris(1-pentyl-1H-indol-3-yl)methylium chloride (LCTA-1975) and (1-(4-(dimethylamino)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-3-yl)bis(1-propyl- 1H-indol-3-yl)methylium chloride (LCTA-2701 – on model lipid membranes were studied. The ability of the tested agents to form ion-conductive transmembrane pores, influence the electrical stability of lipid bilayers and the phase transition of membrane lipids, and cause the deformation and fusion of lipid vesicles was investigated. It was established that both compounds exert a strong detergent effect on model membranes. The results of differential scanning microcalorimetry and measuring of the threshold transmembrane voltage that caused membrane breakdown before and after adsorption of LCTA-1975 and LCTA-2701 indicated that both agents cause disordering of membrane lipids. Synergism of the uncoupling action of antibiotics and the alkaloid capsaicin on model lipid membranes was shown. The threshold concentration of the antibiotic that caused an increase in the ion permeability of the lipid bilayer depended on the membrane lipid composition. It was lower by an order of magnitude in the case of negatively charged lipid bilayers than for the uncharged membranes. This can be explained by the positive charge of the tested agents. At the same time, LCTA-2701 was characterized by greater efficiency than LCTA-1975. In addition to its detergent action, LCTA-2701 can induce ion-permeable transmembrane pores: step-like current fluctuations corresponding to the opening and closing of individual ion channels were observed. The difference in the mechanisms of action might be related to the structural features of the antibiotic molecules: in the LCTA-1975 molecule, all three substituents at the nitrogen atoms of the indole rings are identical and represent n-alkyl (pentyl) groups, while LCTA-2701 contains a maleimide group, along with two alkyl substituents (n-propyl). The obtained results might be relevant to our understanding of the mechanism of action of new antibacterial agents, explaining the difference in the selectivity of action of the tested agents on the target microorganisms and their toxicity to human cells. Model lipid membranes should be used in further studies of the trends in the modification and improvement of the structures of new antibacterial agents.

 


Download here

Back

Nanion コーポレートブログ

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.