• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2012 - Characterizing Human Ion Channels in Induced Pluripotent Stem Cell-Derived Neurons

icon pl   Patchliner publication in Journal of Biomolecular Screening (2012)

Authors: 
Haythornthwaite A, Stoelzle S, Hasler A, Kiss A, Mosbacher J, George M, Brüggemann A, Fertig N.

 

Journal: 
J Biomol Screen. (2012) 17(9):1264-72


Abstract: 

Neurons derived from human-induced pluripotent stem cells were characterized using manual and automated patch-clamp recordings. These cells expressed voltage-gated Na+ (Nav), Ca2+ (Cav), and K+ (Kv) channels as expected from excitable cells. The Nav current was TTX sensitive, IC50 = 12 ± 6 nM (n = 5). About 50% of the Cav current was blocked by 10 µM of the L-type channel blocker nifedipine. Two populations of the Kv channel were present in different proportions: an inactivating (A-type) and a noninactivating type. The A-type current was sensitive to 4-AP and TEA (IC50 = 163 ± 93 µM; n = 3). Application of γ-aminobutyric acid (GABA) activated a current sensitive to the GABAA receptor antagonist bicuculline, IC50 = 632 ± 149 nM (n = 5). In both devices, comparable action potentials were generated in the current clamp. With unbiased, automated patch clamp, about 40% of the cells expressed Nav currents, whereas visual guidance in manual patch clamp provided almost a 100% success rate of patching “excitable cells.” These results show high potential for pluripotent stem cell–derived neurons as a useful model for drug discovery, in combination with automated patch-clamp recordings for high-throughput and high-quality drug assessments at human neuronal ion channels in their correct cellular background.


Download here

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.